289
> V: = V [ 1 ] +V [ 2 ] ;
V := -mgx(0 Ąk{S„ + x(/))2 ~kSl
> V:=simplify(V) ;
1
V \= ~m g x(/) + kSst + x(f) + — k x(ć)
> V:-subs(delta[st3 = (m*g)/k,v);
V:=hx(tf
>zasada zachowania energii:-E+V=0;
1 (d 1 „(d
zasada zachowania energii: = — m — x(n H—Af — x(n
2 1,0/ WJ 4 [di
+ —kx(t)2 = 0 2
>diff(zasada zachowania energii,t);
f d2 ^ | ||
+ £x(/) |
9?|< !! O |
>eqii:=siinplify(di£f (zasada zachowania energii, t) /diff (x(t) , t),symbolic);
+ -M 2
^5-x(/)| + *x(0 = 0
> equl:=collect(egu,< equl := |
di££(x(t] f 1 m + — 2 J |
fs2 ,0 xrx« 9 |
2))); 4- £x(/) = 0 | |||
>egu4:=dsolve(egul,x(t)) ; , ^ „, • f 'FŻyfkt ' egu4x(t)); = Cl sin . ^V2m + A/ ^ |
+ C2cos |
diTkt ^ ^^2m + M j |
>_Cl:=di££(x[0] (t) , t) / (k/ (m+l/2*M)) ; C2:=0;
3 i
1
Cl
^x0(0 || m +
k
C2:= 0
> egu 4;
|sin
k
4l4kt
yjlm+M
*(0 =