CCF20090601014

CCF20090601014



y20 = yo + 0,5/7 P20 = 0.3 + 0.5-0,5-1,2884 = 0,6221

Pio = 5 qx0+0'5H sm(x0 + 0,5/7) - 2>-2o = 5 e0+0'25 sin(0 + 0.25) - 2-0,6221 = 0.3442

^30 = yo + h P30 = 0,3 + 0,5-0,3442 = 0,4721

P40 = 5 eAl siavi - 2y3o = 5 e0” sin0.5 - 2-0.4721 = 3.0080

y, =yo + ’/6 h (/>,o + 2/720 + 2/730 + Ało) = 0,3 + 76-0,5(-0,6 + 2-1,2884 + 2-03442 + 3,0080) = 0,7728

P\ 1 = 5 evl sinxi - 2y, = 5 e0'5 sin0.5 - 2-0,7728 = 2,4067 yu =yi + 0.5/7 pu =0.7728 + 0,5-0.5-2,4067= 1,3744

p2\ = 5 evl+0'5/sinfo + 0,5h) -2y„ = 5 ea5+a25 sin(0.5 + 0.25) - 2-1,3744= 4,4663 y2i =y\ + 0,5/7/72, =0.7728 + 0,5-0,5-4.4663 = 1.8893

p3\ = 5 exl+0'5h sin(x, + 0,5h) - 2y2] = 5 e°'5+025 sin(0.5 + 0.25) - 2-1.8893 = 3,4365

Bi =>4 + hp3\ =0.7728 + 0,5-3.4365 = 2.4910

p4\ = 5 ev2 sia\'2 - 2^31 = 5 e1 sini - 2-2.4910 = 6.4548

y2 =yi + '/6 I>(P\\+ 2/72i + 2/73, +/741) = 0,7728 + '/6-0,5(2,4067 + 2-4,4663 + 2-3,4365 + 6,4548) = = 2,8283

pn = 5 er2 siav2 - 2y2 = 5 e1 sini - 2-2,8283 = 5.7801 yi2 = y2 + 0.5/7 p]2 = 2,8283 + 0.5-0,5-5.7801 = 4,2734

P22 = 5 qx2+0'5H sin(x2 + 0.5/7) - 2yn = 5 el+0'25 sin(l + 0.25) - 2-4.2734 = 8.0147

y22=y2 + 0,5/7 p22 = 2,8283 + 0.5-0.5-8.0147 = 4.8320

P32 = 5 ev2+0,5/' sin(x2 + 0.5h) - 2y22 = 5 e1+a25 sin(l + 0,25) - 2-4.8320 = 6.8974

y32 =y2 + h p32 = 2,8283 + 0.5-6.8974 = 6,2770

p42 = 5 e'v3 sinx3 - 2y32 = 5 eK5 sini,5 - 2-6.2770 = 9.7982

y3 =yi + ‘4 li (P12 + 2/722 + 2/732 + /742) = 2,8283 + '/6-0,5(5,7801 + 2-8,0147 + 2-6,8974 + 9,7982) =

= 6,6119

p\3 = 5 e'v3 sinx3 - 2y3 = 5 e1"'1 sini ,5 - 2-6,6119 = 9.1286 >7,3 =y3 + 0,5/7/7,3 = 6.6119 + 0,5-0,5-9,1286 = 8.8940

p23 = 5 ex3*°’5h sin(x3 + 0.5h) - 2y,3 = 5 eL5+0-25 sin(l,5 + 0,25) - 2-8.8940 = 10,5242 _V23 = y3 + 0,5/7 p23 = 6,6119 + 0,5-0,5-10.5242 = 9,2429

p33 = 5 er3+0-5/? sin(x3 + 0.5h) - 2y23 = 5 e'’5+025 sin(l ,5 + 0,25) - 2-9,2429 = 9.8264

>733 = >73 + h p33 = 6,6119 + 0.5-9.8264 = 11.5251

p43 = 5 e'v4 sinx4 - 2y33 = 5 e2 sin2 - 2-11.5251 = 10.5441

>'4 =y3 + *4 h (Pi3 + 2/723 + 2p33+p43) = 6,6119 + '4-0,5(9,1286 + 2-10,5242 + 2-9,8264 + 10,5441) = = 11,6430

e) Formuła Adamsa-Bashfortha: y,+, =y, + ^24 {55/(x„ y,) - 59/x/_i, y,_i) + 37J(x,-2, yt-2) - 9 f[x,-3, >7,-3)] Ponieważ indeksy maleją od /' do i - 3. trzeba znać nie jedną, ale cztery poprzednie wartości - policzone np. metodą Rungego-Kutty IV rzędu.

>4 =>73 + ;'/24{55 /(x3, >73) - 59 f(x2, y2) + 37/(x,. y,) - 9 /(x0, y0)] =

= 6.6119 + 05/24-[55(5 ev3 siat3 - 2y3) - 59(5 ev2 siav2 - 2>72) + 37(5 evl sinx, - 2y,) - 9(5 e*° siav0 - 2y0)] = = 6.6119 + 0'5/24*[55(5 e15 sini.5 - 2-6.6119) - 59(5 e1 sini - 2-2.8283) + 37(5 e05 sin0.5 - 2-0.7728) -

-    9(5 e° sinO - 2-0,3)] = 11,9346

y5 =y4 + h/24{55 f{x4, y4) - 59/(x3, y3) + 37/(x2, y2) - 9 /(x,, yi)] =

= 6.61 19 +    05/24-[55(5    e'4 siav4 - 2y4) - 59(5 e*3    sinx3 - 2y3) + 37(5 e'2 sinx2 - 2y2) - 9(5 eAl siari -    2y,)] =

= 6.6119 +    °-5/24-[55(5    e2 sin2 - 2-11.6430) - 59(5 e15 sini,5 - 2-6.6119) + 37(5 e1 sini - 2-2,8283)    -

-    9(5 e0 5 sin0.5 - 2-0,7728)] = 15,8616

>;6 =y5 + ^/24{55 /(x5, ys) - 59 f{x4, y4) + 37 f(x3, y3) - 9 f[x2, y2)] =

= 6.6119 +    05/24-[55(5    ev5 siav5 - 2y5) - 59(5 ev4    sinx-4 - 2y4) + 37(5 er3 sinx3 - 2y3) - 9(5 ev2 sinx2 -    2y2)] =

= 6.6119 +    °'5/24-[55(5    e2'5 sin2.5 - 2-15.8616) -    59(5 e2 sin2 - 2-11,9346) + 37(5 e1'5 sini,5 - 2-6,6119) -

-    9(5 e1 sini - 2-2.8283)] = 15,2820

15


Wyszukiwarka

Podobne podstrony:
CCF20090601014 y2o ~ jo + 0,5 h P20 — 0,3 + 0,5-0,5-1,2884 — 0,6221 P30 = 5 ex0+0’5h sin(x0 + 0,5h)
Gabarito para Fuxico Borboleta Grande QUICK YO YO MAKER BUTTERFLY SHAPE LARGE C&or Młte SM
CCF20080604007 ZE ST AU PY T4Ń DO: TCLOUcr/(jM / TYdlotb) Oć£ćo.ra&&yo*j n&oćoj  
CCF20090328001 k- PaoLac    fyvotP0 HooU a. OoU^yo^cJT-fe^ cicJa P°oi yrftyuM et/^^
CCF20090328005 /Usl X.    ^O^cJL Ą kąt £^ct yO pjsulhwju C^ ^od<^/^yw pflWo 2 lj
CCF20081119013 ■jygx?-uo    ~fo yo 7^’W ooyoyo oo? v,
CCF20081119022 <v a2^2 ?ćO/7y / lc Gb/] ££>•>§/? £^p*>c/ry ć**€>3?ricy5& ■fil? C
CCF20090106039 X £ .1 Ł/ ćX>c - Ar wV yó I f (2rc k Ams -)c t C -V ) X ^ ^ ..
CCF20090328001 k- PaoLac    fyvotP0 HooU a. OoU^yo^cJT-fe^ cicJa P°oi yrftyuM et/^^
CCF20080507002 A «L • V w- ? A ^ <,4 -sl4 paS/od^o^yo. GĆol^^ f U    ) de%±^ V
CCF20091008035 Ryc. 15. Przykład wykresu zależności AR od R nym w trakcie analizy areometrycznej pi
CCF20091218054 IX = FC -Fa +F_2 =0    +ĄZ-/* =0 A    lirm b d fcć +

więcej podobnych podstron