y2o ~ jo + 0,5 h P20 — 0,3 + 0,5-0,5-1,2884 — 0,6221
P30 = 5 ex0+0’5h sin(x0 + 0,5h) - 2y20 = 5 e0+0-25 sin(0 + 0,25) - 2-0,6221 = 0,3442
J30 =yo + hp30 = 0,3 + 0,5-0,3442 = 0,4721
pąo = 5 eAl simą - 2j3o = 5 e0"'’ sin0.5 - 2-0,4721 = 3.0080
ji = j0 + ‘/6 /i (pto + 2p20 + 2p30 + p40) = 0,3 + V6-0,5(-0,6 + 2-1,2884 + 2-0,3442 + 3,0080) = 0,7728
Pu =5 exl simą - 2y, = 5 e0’5 sin0.5 - 2-0,7728 = 2,4067 yn=yi+ 0,5/2 pu = 0,7728 + 0,5-0,5-2,4067 = 1,3744
p2\ = 5 exl+0’5/? sin(x, + 0,5h) - 2yu = 5 e°’5+0’25 sin(0,5 + 0,25) - 2-1,3744= 4,4663 J21 = y\ + 0,5/7 p2\ = 0.7728 + 0,5-0,5-4,4663 = 1,8893
p3\ = 5 exl+0’5h Sin(x, + 0,5h) - 2j2) = 5 e0’5+a25 sin(0.5 + 0,25) - 2-1,8893 = 3,4365
J31 = ji + hpu = 0,7728 + 0,5-3,4365 = 2,4910
7?4i = 5 e'2 siriX2 - 2j3i = 5 e1 sini - 2-2.4910 = 6,4548
j2 = Ji + V6 h(p\\+ 2p2i + 2p3i + P4i) = 0,7728 + ‘/6-0,5(2,4067 + 2-4,4663 + 2-3,4365 + 6,4548) =
= 2,8283
pn = 5 e'2 sinx2 - 2j2 - 5 e1 sini - 2-2,8283 = 5,7801
J12 = J2 + 0,5/2 Pi 2 = 2,8283 + 0,5-0,5-5,7801 = 4,2734
p22 = 5 ex2+0'5/' sin(x2 + 0,5/2) - 2j,2 = 5 ei+0’25 sin(l + 0,25) - 2-4,2734 = 8,0147
J22 = J2 + 0,5/2 p22 = 2,8283 + 0,5-0,5-8,0147 = 4.8320
p32 = 5 ex2+0-5h Sin(x2 + 0,5h) - 2y22 = 5 el+a25 sin(l + 0,25) - 2-4,8320 = 6,8974
J32 =yi + hp32 = 2,8283 + 0,5-6,8974 = 6,2770
p42 = 5 e*3 sinx3 - 2j32 = 5 e1'5 sini ,5 - 2-6,2770 = 9,7982
J3 = J2 + '/(, h (Pu + 2p22 + 2pn + Pu) = 2,8283 + V6-0,5(5,7801 + 2-8,0147 + 2-6,8974 + 9,7982) =
= 6,6119
pu = 5 ex3 sinx3 - 2j3 = 5 eK5 sin 1,5 - 2-6,6119 = 9.1286 J13 = J3 + 0,5 h p\3 = 6,6119 + 0,5-0,5-9,1286 = 8,8940
P23 = 5 ex3+0’5/l sin(x3 + 0,5/2) - 2j,3 = 5 e'-5+0'25 sin(l,5 + 0.25) - 2-8,8940 = 10,5242 J23 = J3 + 0,5/2 p23 = 6,6119 + 0,5-0,5-10,5242 = 9,2429
P33 = 5 ex3+0'5/' sin(x3 + 0,5h) - 2j23 = 5 e'-5+0’25 sin(l,5 + 0,25) - 2-9,2429 = 9,8264
J33 = J3 + hP33 = 6,6119 + 0,5-9,8264 = 11,5251
P43 = 5 e'4 sinx4 - 2j33 = 5e2 sin2 - 2-11,5251 = 10,5441
J4 = J3 + '/6 h (Pu + 2/723 + 2pu + /743) = 6,6119 + '/6-0,5(9,1286 + 2-10,5242 + 2-9,8264 + 10,5441) = = 11,6430
e) Formuła Adamsa-Bashfortha: yi+\ = y, + h/24-[55J(xi, y,) - 59 /(x,_i, j;-i) + 37 /(x,_2, y,-i) - 9y(x,-3) j,_3)] Ponieważ indeksy maleją od i do i - 3, trzeba znać nie jedną, ale cztery poprzednie wartości - policzone np. metodą Rungego-Kutty IV rzędu.
J4 = J3 + V[55./tx3, >’3) - 59 /(x2, y2) + 37./(xi, j]) - 9 f[x0, jo)] =
= 6,6119 + °"724-[55(5 eAJ siax3 - 2j3) - 59(5 ex2 sinx2 - 2j2) + 37(5 eAl sinxi - 2ji) - 9(5 ex0 sinxo - 2jo)] = = 6,6119 + °-5/24-[55(5 e1'5 sini,5 - 2-6,6119) - 59(5 e1 sini - 2-2,8283) + 37(5 e0’5 sin0,5 - 2-0,7728) -
- 9(5 e° sinO - 2-0,3)] = 11,9346
Js = J4 + ;724 -[55 /(x4. j4) - 59 /(x3, j3) + 37 /(x2, j2) - 9 f[xh ji)] =
= 6.6119 + °'5/24-[55(5 ex4 sinx4 - 2j4) - 59(5 ex3 sinx3 - 2j3) + 37(5 ex2 sinx2 - 2j2) - 9(5 exl sinx, - 2j,)] =
= 6,6119 + °'5/24-[55(5 e2 sin2 - 2-11,6430) - 59(5 e1'5 sini,5 - 2-6,6119) + 37(5 e1 sini - 2-2,8283) -
- 9(5 e0-5 sin0.5 - 2-0,7728)] = 15,8616
J6 = J5 + V24-[55./(x5) Js) - 59 /(x4, j4) + 37 /(x3, j3) - 9f[x2, j2)] =
= 6.6119 + 0,5/24-[55(5 ex5 sinxj - 2j5) - 59(5 ex4 sinx4 - 2j4) + 37(5 eXJ sinx3 - 2j3) - 9(5 e'2 sinx2 - 2j2)] =
= 6,6119 + °'5/24-[55(5 e2-5 sin2,5 - 2-15.8616) - 59(5 e2 sin2 - 2-11,9346) + 37(5 eu sini,5 - 2-6,6119) -
- 9(5 e1 sini - 2-2,8283)] = 15,2820
15