1. (IOp) Use the Taylora Formula for f(x,y) ,f(X, y) = e2M'1 to find the quadratic (n = 2) approximation at the origin (0,0). Estimate the value of f(0.0l,o.0l) = e°”. Ta/ao)- + +6*2 *1^
|| S e*'53 S=3 I
a
2.(1 Op) Sketch the region of integration, reverae the order of integration . .... ■ Tx~x . -1 J°* Jf(x,yj dv
3~iłx-v* - “J f x-4” ©o
' - *4 "A Iz ’ / X - a - - 1
i*
4 - (y -01-* (*-*)' =2> {?■*>'
fc-
?, Ili P W
3.(1 Op) Find the volume of the region that lies belo w the graph of f(X,y) /Jj-above the region R = {(x,y):0sxsl, 0<;ysx2}.
, u*rvf7*7r],'v,= =
o i * o o ®1 :
ki^eU
4. (lOp) Evaluate the given integral by changing to polar cord. ff"7=====e==5B_
r V*2 +ył ^*dy
R is bounded by the curves : y > 0, jd-^yi^gTfy; x2 + y2 < .
y: \
tfa cos©
M
° Tł‘r M
f X3
5. (1 Op) Evaluate the following improper int. |—--dx
o * +3
IBR^
^ UłtS: