= 2x+ -i
Oblicz elastyczność w x=2... X
ty
3
3 4x3
J (2 2+i) 2.
ty
■ji * '
Sr-
+i‘L
^(SO-3,5
fć^> = 3,58535 f(7,°2.\'fCĄ^ 0,08535 0,08535 _ Q 02l,5 =
= 2/3%
10 3 0
1 6 o a ?>6 6rO 55 0 4
=
pl o 2> pl 6 O |_3 £ 9_
© £L,tO--26 ~1g (S) /iS -f o o = 18 (g) -m& = ^g
+3/ |
-3 |
+-12 |
--18 |
-s | |
+-18 |
—3 |
+ 6- j |
JAH&
54 -9 -12“1 48 O -6 -1Ł 3 £
A
-1
= j_. (ppy~ jl |a| ^ r 'is
VA = r= \£
L 1
ApP = I
, _ ^ A=P o 2>
4-3X3 — O H 6 O
x-i + €.^2, — ~3 (_3G>9-
3xjl + 6xź4 9x* = -12 4 a B
-*62 +246 = Sty
fs4 4& ~% r-9 Q 3 -12 -6 6
-IG S^-l-2 — -13
X=i+1B
i)
Kwadratowa
podmacierz
Wyznacznik ty tejże...
j\/P2
pi 0 a |
J?= |
r ~\ 0 |
460 | ||
|_3 £ 9_ |
H2 |
i-18
Metoda wyznacznikowa..
o 0 2> -36 O l~12.& 9
4 o 2> 160 j 3S 9
o 0 2>
-36 O
1 o i 1 -J O ,M2 9
1 o 2> 160 |3S 9
4 0 2> |
= -S- |
A 0 1 |
\o |
0 4 |
4 -3 O |
4 3 0 |
— 3H |
30 | |
3-12 9 |
3 ^ "2> |
/o |
/p
*r*a
4sV^
x -
2.
10° 16-J 3642
1 o 2> 160 ,36 9
10° 4 6-3 3 6-C
A=p o 2> 160 |_3 £ 9_
[
'i o 3 O 1 J o-9 i 6 9 -42
o i o
6 -S -3 6 O -I-i.
Wi 3w^j
4Q3 0 <T-3 o o 4
/I o O Ol 6
o o'r