p~ 0.995 T a b I i c i >j Vc«ł.)
___ |
l |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
10 |
12 ’ |
20 |
40 |
60 |
100 |
CC |
ł 1 3 4 5 6 |
198.0 55.6 3U 22.8 18.6 |
199,0 49.8 26.3 18.3 14.5 |
199.0 47.5 24.3 16.5 12.9 |
199.0 46.2 23.2 15,6 12.0 |
199.0 45.4 22.5 14.9 11.5 |
199,0 44.8 22.0 14,5 11.1 |
199,0 44.4 21.6 14.2 10.8 |
199.0 44.1 21.4 14.0 10.6 |
199,0 43.7 21.0 13,6 10.2 |
199.0 43.4 20.7 13.4 10.0 |
199,0 42.8 20.2 12.9 9.59 |
199.0 42.3 19.8 12.5 9,34 |
199,0 42.1 19.6 12.4 9.12 |
199.0 42.0 19,5 12,3 9,0) |
200,0 41.8 19.) 12.1 |
16.2 |
12,4 |
10.9 |
10.0 |
9.52 |
9,16 |
8.89 |
8.68 |
8.38 |
8.18 |
7,75 |
7.42 |
7.31 |
7,22 | ||
i l.U |
9,60 |
8.81 |
8.30 |
7.95 |
7.69 |
7,50 |
7.21 |
7.01 |
6.61 |
6.29 |
o.ia |
6,09 |
5 95 | ||
13.6 |
10.1 |
8.72 |
7.96 |
7,47 |
.13 |
6.88 |
. 6,69 |
6.42 |
6.23 |
5.8) |
5.52 |
5.41 |
5.32 |
,19 | |
9.43 |
,06 |
.34 |
6.87 |
6,54 |
.30 |
.12 |
■ 5.85 |
5.66 |
.27 |
4.97 |
4.86 |
4.77 |
4.64 | ||
U |
12.2 |
8.91 |
7.60 |
6.88 |
6.42 |
6.10 |
5.86 |
5.68 |
S.42 |
5.24 |
4,86 |
4.55 |
4.44 |
4.36 |
4*23 |
12 n |
u.s |
.5! |
,23 |
.52 |
.07 |
5;76 |
.52 |
.35 |
.09 |
4.91 |
.5) |
.2) |
,12 |
.04 |
390 |
.4 |
.19 |
' 6.93 |
.23 |
5.79 |
.48 |
.25 |
.08 |
4.82 |
.0-4 |
J7 |
3.97 |
3,87 |
3.78 |
.65 | |
,i |
7.92 |
.68 |
.00 |
.56 |
.26 |
.0) |
4.86 |
.60 |
.43 |
.06 |
.76 |
,66 |
.57 |
44 | |
15 |
10.8 |
.70 |
.48 |
5.80 |
.37 |
.07 |
4.85 |
.67 |
.42 |
J5 |
3.88 |
.58 |
.48 |
.39 |
J6 |
16 |
.6 |
.51 |
.30 |
.64 |
.21 |
4,91 |
.69 |
.52 |
.27 |
.10 |
.73 |
,44 |
.33 |
J5 |
.u |
17 |
.4 |
.35 |
.16 |
.50 |
,07 |
,78 |
.56 |
.39 |
.14 |
3.9? |
.61 |
.31 |
Jl |
,12 |
2,98 |
18 |
.2 |
.21 |
03 |
,37 |
4.96 |
,66 |
.44 |
J8 |
.03 |
.86 |
.50 |
.20 |
.10 |
.01 |
,87 |
19 |
.1 |
.09 |
5.92 |
.27 |
.85 |
.56 |
.34 |
,18 |
3,93 |
,76 |
.40 |
.11 |
,00 |
2.91 |
.78 |
20 |
9.94 |
6,99 |
.82 |
.17 |
.76 |
.47 |
.26 |
.09 |
.85 |
.68 |
.32 |
.02 |
2.92 |
,83 |
,69 |
21 |
9,83 |
6.89 |
5.7J |
5.U9 |
4.68 |
4.39 |
4.18 |
4,0! |
3.77 |
3.60 |
3.24 |
2.95 |
2.84 |
2.75 |
2.61 |
.73 |
.81 |
.65 |
.02 |
.61 |
.32 |
.11 |
3.94 |
.70 |
J4 |
.18 |
.88' |
.77 |
.69 |
.55 | |
23 |
,6) |
.73 |
.58 |
4.95 |
.54 |
.26 |
.05 |
.88 |
.64 |
,47 |
.12 |
.82 |
.71 |
.62 |
.48 |
24 |
.55 |
.66 |
.52 |
.89 |
.49 |
,20 |
3.99 |
,83 |
.59 |
.42 |
.06 |
.77 |
.66 |
.57 |
.4) |
25 |
.46 |
.60 |
.46 |
.84 |
.43 ■ |
.15 |
.94 |
.78 |
.54 |
.37 |
.01 |
.72 |
.Ol |
.52 |
.38 |
26 |
,41 |
.54 |
.41 |
.79 |
.38 |
. JO |
.89 |
.73 |
.49 |
.33 |
2.97 |
.6? |
.56 |
.47 |
.3) |
27 |
.34 |
,49 |
.36 |
,74 |
.34 |
.06 |
.85 |
.69 |
.45 |
.28 |
.93 |
.6) |
.52 |
.43 |
.29 |
28 |
.28 |
.44 |
.32 |
.70 |
.30 |
.02 |
.81 |
.65 |
.41 |
J5 |
.89 |
.59 |
..48 |
.39 |
.25 |
29 |
.23 |
.40 |
J8 |
.66 |
.26 |
3.98 |
.77 |
,Gl |
.38 |
.21 |
.86 |
.56 |
.45 |
.36 |
.21 |
30 |
,18 |
.35 |
J4 |
•62 |
.23 |
.95 |
,74 |
.58 |
.34 |
.18 |
.82 |
.52 |
.42 |
.32 |
.18 |
40 |
8.83 |
6.07 |
4.98 |
4J7 |
3,99 |
3.71 |
3.51 |
3.35 |
3.12 |
2.95 |
2.60 |
2,30 |
2.18 |
2,09 |
1.93 |
60 |
,49 |
5,80 |
.73 |
.14 |
,76 |
.49 |
.29 |
,13 |
2.90 |
.74 |
.39 |
.08 |
1.96 |
1.86 |
.69 |
120 |
.18 |
.54 |
JO |
3.92 |
.55 |
.29 |
.09 |
2.94 |
.71 |
.55 |
.19 |
1.87 |
.75 |
.64 |
.4) |
X |
7.88 |
JO |
J8 |
.72 |
.35 |
.09 |
2.90 |
.74 |
.52 |
J6 |
.00 |
.67 |
.53 |
' .40 |
.00 |
r2 |
r, | ||||||||||||||
1 |
2 |
3- |
4 |
5 |
6 |
7 |
8 |
10 |
12 |
20 |
40 |
60 |
1(81 |
x | |
1 2 3 4 5 6 7 8 9 10 11 12 13 U 15 16 17 18 19 20 21 22 2) 24 25 26 27 28 29 30 40 60 120 |
98.5 34.1 21.2 16,3 13.7 12.2 UJ 10.6 .0 9.65 .33 .07 8.86 .68 J3 .40 J9 .18 .10 8.02 7.95 .8* .82 .77 .72 .68 .64 .60 .56 7.31 .08 6,85 ! .63 |
99.0 30.8 18.0 13.) 10.9 9.55 8.65 .02 7.56 7.21 6.9) .70 .51 .36 .2) .11 .01 5.9) .85 5.78 .72 .66 .61 .57 .5) .49 .45 .42 J9 5.18 4.98 .79 , -61 |
99.2 29.5 16.7 12.1 9.78 8.45 7J9 6.99 J5 6.22 5;95 .74 J6 .42 .29 .18 .09 .01 4.94 4.87 .82 .76 .72 .68 .64 .60 .57 .54 .51 4.31 .1) 3.95 18 |
99.2 2K.7 16.0 11.4 9.15 7.85 .01 6.42 5.99 5.67 .41 .21 ,04 4,89 .77 .67 .58 .50 .43 4.37 Jl .26 .22 .18 .14 .11 .07 .04 02 J.B 3 .65 .4* L -32 |
99.3 28.2 15.5 11.0 8.75 7.46 6.63 .06 5.64 5.32 .06 4.86 .70 .56 .44 .34 .25 .17 .10 4.04 3.99 .94 .90 .86 ,82 .78 .75 .73 .70 3.51 .34 .18 .02 |
99.3 27.9 15.2 10.7 8.47 7.19 6.37 5J50 .39 5,07 4.82 .62 .46 J2 .20 .10 .01 .3.94 .87 3,81 .76 .71 .67 .63 .59 .56 .53 JO .4? 3.29 .12 2.96 .80 |
99.4 27.7 15.0 10.5 8.26 6.99 .18 5.61 .20 4.89 .64 .44 .28 .14 .0) 3.93 .84 .77 .70 3.64 .59 .54 .50 .46 .42 J9 .36 .33 JO 3.12 2.9} .80 .64 |
99.4 27 J 14.8 10.3 8.10 6.84 .03 5.47 .06 4.74 .511 .30 .14 .00 3.89 .79 .71 .63 .56 3.51 .45 .41 .36 .32 .29 .26 .23 .20 .17 2.99 .82 .67 .51 |
99.4 27.2 14.5 KU 7.8? 6.62 5.8! .26 4.X5 4.54 .30 .10 3.94 .80 .69 .69 .51 .43 „37 3.31 .26 .21 .17 .13 .09 .06 .03 .00 2.98 2.80 .63 .48 .32 |
99.4 27.1 14.4 9.89 7.72 6.47 5.67 .11 4.71 4.40 .16 3.96 .80 .67 .55 .46 .37 .10 ■2) ' 3.17 .12 .07 .03 2.99 .96 .93 .90 ,87 .84 2.66 JO .34 .18 |
99.4 26.7 14.0 9.55 7.40 6.16 5.36 4.81 .41 4.10 3.86 .66 Jl .37 .26 .16 .08 .00 2.91 2.88 .8.) .78 .74 .70 66 .6) .60 .57 .55 2.37 .20 .04 1.88 |
99.5 26.4 13.7 ' 9.29 7.14 5.91 .12 4.57 .17 3.86 .62 .43 .27 .13 .02 2.92 .84 .76 .69 2.64 .58 .54 .49 .45 .42 .38 J5 .3) .30 2.11 1.94 .77 |
9*1.5 26.3 13.7 9.20 706 5.82 .03 4.48 .118 3.78 .54 .34 .18 .05 2.93 .83 .75 .67 .61 2.55 .50 .45 .40 .36 .33 .29 .26 .23 .21 2.02 1.84 ,66 |
99.5 26.2 13.6 9.13 6.99 5.75 4.96 .42 .01 3.71 .47 .27 .11 3.98 .86 .76 .68 .60 .54 2.48 .42 .37 .33 .29 .25 .22 .19 .16 .13 1.94 .75 .56 |
99.5 26.1 13.5 9.02 6.88 5.65 4.86 .3! 3.91 3.60 .36 .17 .00 2.87 .75 .65 .57 .49 .42 2.36 .31 .26 .2! .17 .13 .10 .06 • .03 .01 1.80 .60 J8 |
----^ — |
........ |
• - — ■ — |
--—-i-;-1---- |
. — |
___£2J |
Tablica 5. Wartości (u) dystrybuanty rozkładu normalnego N(0, 1)
u |
0,00 |
0,01 |
0,02 |
0,03 |
0,04 |
: 0,05 |
0,06 |
0,07 |
0,08 |
0,09 |
0,0 |
0,5000 |
0,5040 |
0,5080 |
0,5120, |
0,5160 |
0,5199 |
0,5239 |
0,5279 |
0,5319 |
0,5359 |
0,1 |
,5398 |
,5438 |
,5478 |
.5517 |
.,5557 |
,5596 |
,5636 |
...,5675 |
,5714 |
,5753 |
0,2 |
,5793 |
,5832 |
,5871 |
,5910 |
,5948 |
,5987 |
,6026 |
,6064 |
,6103 |
,6141 |
0,3 |
,6179 |
,6217 |
,6255 |
,6293 |
,6331 |
,6368 |
,6406 |
,6443 |
,6480 |
,6517 |
0,4 |
■ ,6554 |
,6591 |
,6628 |
,6664 |
,6700 |
.6736 |
,6772 |
,6808 |
,6844 |
,6879 |
0,5 |
,6915 |
,6950 |
,6985 |
,7019 |
,7054 |
,7088 |
,7123 |
,7157 |
,7190 |
7224 |
0,6 |
.7257 . |
,7290 |
,7324 |
,7357' |
.,7389 |
,7422 |
,7454 |
,7486 |
,7517 |
,7549 |
0,7 |
.7580 |
,7611 |
,7642 |
,7673 |
,7704 |
,7734 |
,7764 |
,7794 |
,7823 |
,7852 |
0,8 |
,7881 |
,7910 |
,7939 |
,7967 |
,7995 |
,8023 |
,8051 |
,8078 |
,8106 |
,8133 |
0,9' |
,8159 |
,8186 |
,8212 |
,8238 |
,8264 |
,8289 |
,8340 |
,8340 |
,8365 |
,8389 |
1,0 |
0,8413 |
0,8438 |
0,8461 |
0,8485 |
0,8508 |
0,8531 |
0,8554 |
0,8577 |
0,8599 |
0,8621 |
1,1 |
,8643 |
,8665 |
,8686 |
,8708 |
,8729 |
,8749 |
,8770 |
,8790 |
,8810 |
,8830 > |
1,2 |
,8849 |
,8869 |
,8888 |
,8907 |
.8925 |
,8944 |
,8962 |
,8980 |
,8997 |
,9015 |
1,3 |
,9032 |
,9049 |
,9066 |
,9082 |
,9099 |
,9115 |
,9131 |
,9147 |
.9162 |
,9177 |
1,4 |
,9192 |
,9207 |
,9222 |
,9236 |
,9251 |
,9265 |
,9279 |
,9292 |
,9306 |
,9319 |
1,5 |
,9332 |
,9345 |
,9357 |
,9370 |
,9382 |
,9394 |
,9406 |
,9418 |
,9429 |
,9441 |
1,6 |
. ,9452 |
,9463 |
,9474 |
,9484 |
,9495 |
,9505 |
<>515 |
,9525 |
-.9535 |
,9545 |
1.7 |
,9554 |
,9564 |
,9573 |
,9582 |
,9591 |
,9599 |
,9608 |
,9616 |
,9625 |
,9633 |
1,8 |
,9641 |
,9649 |
,9656 |
,9664 |
,9671 |
,9678 |
,9686 |
,9693 |
,9699. |
,9706 |
1.9 |
,9713 |
,9719 |
.9726 |
,9732 |
,9738 |
,9744 |
,9750 |
,9756 |
,9761 |
,9767 |
2,0 |
0,9772 |
0,9779 |
0,9783 |
0,9788 |
0,9793 |
0,9798 |
0,9803 |
0,9808 |
0,9812 |
0,9817 |
2,1 |
,9821 |
,9826 |
,9830 |
• ,9834 |
,9838 |
,9842 |
,9846 |
,9850 |
,9854 |
,9857 |
2,2 |
,9861 |
,9864 |
,9868 |
,9871 |
,9875 |
,9878 |
,9881 |
,9884 |
,9887 |
,9890 |
2.3 |
,9893 |
,9896 |
,9898 |
,9901 |
,9904 |
,9906 |
.9909 |
,9911 |
,9913 |
,9916 |
2,4 |
,9918 |
,9920 |
,9922 |
,9925 |
,9927 |
,9929 |
,9931 |
,9932 |
,9934 |
,9936 |
2,5 |
,9938 |
.9940 |
,9941 |
,9943 |
,9945 |
,9946 |
,9948 |
,9949 |
,9951 |
,9952 |
2,6 |
,9953 |
,9955 |
,9956 |
,9957 |
,9959 |
,9960 |
,9961 |
,9962 |
.9963 |
.9964 |
2,7 |
,9965 |
,9966 |
.9967 |
,9968 |
,9969 |
,9970 |
,9971 |
,9972 |
,9973 |
,9974 |
2,8 |
,9974 |
,9975 |
,9976 |
,9977 |
,9977 |
,9978 |
,9979 |
•,9979 |
,9980 |
,9981 |
2,9 |
,9981 |
,9982 |
,9982 |
,9983 |
,9984 |
,9984 |
,9985 |
,9985 |
,9986 |
,9986 |
Tablica 6. Kwantyle u (p) rzędu p rozkładu normalnego N (0, 1)
P |
0,90 |
0,95 |
0,975 |
0,99 |
0,995 |
u (p) |
1,28 |
1,64 |
1,96 |
2,33 |
2,58 |