p-0,995 T « *> V i c a 9
....... | |||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
10 |
12 ' |
20 |
40 |
60 |
100 |
CO | |
1 2 |
i 98,0 |
199,0 |
199,0 |
199.0 |
199,0 |
199,0 |
199.0 |
199,0 |
199,0 |
199,0 |
199.0 |
199.0 |
199,0 |
199,0 |
200,0 |
3 |
55,6 |
49,8 |
47,5 |
46,2 |
45,4 |
44.8 |
44,4 |
44.1 |
43.7 |
43.4 |
42.8 |
42,3 |
42.1 |
42,0 |
41,8 |
4 |
314 |
26,3 |
24,3 |
23.2 |
22.5 |
22.0 |
21.6 |
21,4 |
21,0 |
20.7 |
20,2 |
19,8 |
19,6 |
19,5 |
19,3 |
5 |
22,8 |
18.3 |
16,5 |
15,6 |
14.9 |
14.5 |
14.2 |
14,0 |
13.6 |
13.4 |
12.9 |
12,5 |
12.4 |
12.3 |
12.1 |
6 |
18.6 |
14,5 |
12,9 |
12.0 |
11.5 |
11,1 |
10.8 |
10.6 |
10.2 |
10.0 |
9.59 |
9,24 |
9.12 |
9,03 |
8,88 |
7 |
16.2 |
12.4 |
10,9 |
10,0 |
9.52 |
9,16 |
8,89 |
8.68 |
8.38 |
8.18 |
7.75 |
7,42 |
7.31 |
7,22 |
7,08 |
8 |
14,7 |
11.0 |
9,60 |
8.81 |
8,30 |
7.95 |
7,69 |
7,50 |
7,21 |
7,01 |
6.61 |
6.29 |
6.18 |
6.09 |
5.95 |
9 |
13.6 |
10.1 |
8.72 |
7,96 |
7.47 |
.13 |
6.88 |
, 6,69 |
6.42 |
6,23 |
5.83 |
5.52 |
5.41 |
5.32 |
.19 |
•• 10 |
12.8 |
9.43 |
.08 |
.34 |
6.87 |
6.54 |
.30 |
.12 |
• 5,85 |
5.66 |
47 |
4,97 |
4.86 |
4,77 |
4.64 |
11 |
12.2 |
8.91 |
7.60 |
6.88 |
6.42 |
6,10 |
5,86 |
5,68 |
5.42 |
5,24 |
4,86 |
4.55 |
4.44 |
4.36 |
4.23 |
12 |
11.8 |
.5! |
,23 |
.52 |
,07 |
5;76 |
,52 |
,35 |
.09 |
4.91 |
,53 |
.23 |
.12 |
.04 |
3,90 |
13 |
.4 |
.19 |
6,93 |
,23 |
5.79 |
.48 |
.25 |
.08 |
4.82 |
.64 |
21 |
3.97 |
3.87 |
3,78 |
.65 |
14 |
,1 |
7,92 |
.68 |
,00 |
.56 |
.26 |
.03 |
4,86 |
.60 |
.43 |
.06 |
.76 |
.66 |
.57 |
.44 |
15 |
10.8 |
,70 |
,48 |
5.80 |
.37 |
.07 |
4.85 |
.67 |
.42 |
.25 |
3,88 |
,58 |
.48 |
.39 |
.26 |
16 |
,6 |
,51 |
,30 |
.64 |
.21 |
4.91 |
.69 |
.52 |
.27 |
.10 |
.73 |
.44 |
.33 |
,25 |
.11 |
17 |
,4 |
.35 |
,16 |
,50 |
,07 |
,78 |
,56 |
.39 |
.14 |
3.97 |
.61 |
,31 |
.21 |
.12 |
2,98 |
IK |
.2 |
.21 |
,03 |
,37 |
4,96 |
.66 |
.44 |
.28 |
.03 |
.86 |
,50 |
.20 |
.10 |
.01 |
,87 |
19 |
,1 |
,09 |
5.92 |
.27 |
.85 |
.56 |
.34 |
,18 |
3.93 |
.76 |
,40 |
.11 |
.00 |
2,91 |
,78 |
20 |
9.94 |
6.99 |
,82 |
.17 |
,76 |
.47 |
.26 |
.09 |
.85 |
.68 |
.32 |
.02 |
2.92 |
.83 |
.69 |
21 |
9,83 |
6,89 |
5.73 |
5.09 |
4,68 |
4.39 |
4.18 |
4.01 |
3.77 |
3.60 |
3.24 |
2.95 |
2.84 |
2.75 |
2.61 |
22_ |
,73 |
.81 |
,65 |
,02 |
.61 |
.32 |
.11 |
3.94 |
.70 |
,54 |
.18 |
.88 |
.77 |
.69 |
.55 |
23 |
,63 |
.73 |
.58 |
4,95 |
.54 |
.26 |
.05 |
.88 |
.64 |
,47 |
.12 |
,82 |
,71 |
,62 |
.48 |
24 |
.55 |
,66 |
.52 |
.89 |
.49 |
.20 |
3.99 |
,83 |
.59 |
.42 |
.06 |
.77 |
,66 |
.57 |
.43 |
25 |
.48 |
.60 |
.46 |
.84 |
.43 |
,15 |
.94 |
,78 |
,54 |
.37 |
.01 |
.72 |
.Ol |
.52 |
.38 |
26 |
.41 |
,54 |
.41 |
.79 |
.38 |
.10 |
.89 |
,73 |
.49 |
.33 |
2.97 |
.67 |
.56 |
.47 |
.33 |
27 |
.34 |
,49 |
.36 |
.74 |
.34 |
,06 |
.85 |
.69 |
.45 |
.28 |
.93 |
.63 |
.52 |
.43 |
.29 |
28 |
.28 |
.44 |
,32 |
.70 |
,30 |
.02 |
.81 |
.65 |
.41 |
.25 |
,89 |
.59 |
„48 |
.39 |
,25 |
29 |
.23 |
.40 |
.28 |
.66 |
.26 |
3,98 |
.77 |
.61 |
.38 |
.21 |
.86 |
.56 |
.45 |
.36 |
.21 |
30 |
,18 |
.35 |
44 |
.62 |
.23 |
.95 |
.74 |
.58 |
.34 |
.18 |
.82 |
.52 |
.42 |
.32 |
.18 |
40 |
8.83 |
6.07 |
4.98 |
4.37 |
3.99 |
3.71 |
3.51 |
3.35 |
3,12 |
2.95 |
2,60 |
2.30 |
2.18 |
2,09 |
1.93 |
60 |
,49 |
5.80 |
.73 |
.14 |
.76 |
.49 |
,29 |
.13 |
2,90 |
.74 |
,39 |
.08 |
1.96 |
1.86 |
.69 |
120 |
.18 |
,54 |
.50 |
3,92 |
.55 |
.29 |
,09 |
2,94 |
.71 |
.55 |
.19 |
1.87 |
.75 |
.64 |
.43 |
X |
7.88 |
.30 |
.28 |
,72 |
,35 |
.09 |
2,90 |
.74 |
,52 |
46 |
,00 |
.67 |
.53 |
.40 |
.00 |
T a b 1 i ca 9 luli
ri | |||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
10 |
12 |
20 |
40 |
60 |
100 |
Vj | |
1 2 |
98.5 |
99.0 |
994 |
99.2 |
99.3 |
99.3 |
99.4 |
99.4 |
99.4 |
99.4 |
99.4 |
99.5 |
‘>9.5 |
99.5 |
99.5 |
3 |
34.1 |
30,8 |
294 |
28.7 |
284 |
27.9 |
27.7 |
27.5 |
274 |
27.1 |
26.7 |
26.4 |
26.3 |
264 |
26.1 |
4 |
21.2 |
18.0 |
16,7 |
16.0 |
15.5 |
154 |
15.0 |
14.8 |
14.5 |
14.4 |
14.0 |
13.7 |
13.7 |
13.6 |
13.5 |
5 |
16.3 |
13.3 |
12.1 |
11.4 |
11.0 |
10.7 |
10.5 |
10.3 |
10.1 |
9.89 |
9.55 |
9.29 |
940 |
9.13 |
9.02 |
6 |
13.7 |
10.9 |
9.78 |
9.15 |
8.75 |
8.47 |
846 |
8.10 |
7.87 |
7.72 |
7.40 |
7.14 |
7.06 |
6.99 |
6.88 |
7 |
12,2 |
9.55 |
8.45 |
7.85 |
7.46 |
7.19 |
6.99 |
6.84 |
6.62 |
6.47 |
6.16 |
5.91 |
5.82 |
5.75 |
5.65 |
8 |
11.3 |
8,65 |
7.59 |
.01 |
6,63 |
6.37 |
.18 |
.03 |
5.81 |
5.67 |
5.36 |
.12 |
.03 |
4.96 |
4.86 |
9 |
10,6 |
.02 |
6.99 |
6.42 |
.06 |
5.80 |
5.61 |
5.47 |
46 |
.11 |
4.81 |
4.57 |
4.48 |
.42 |
.31 |
10 |
.0 |
7.56 |
45 |
5,99 |
5.64 |
.39 |
40 |
.06 |
4.85 |
441 |
.41 |
.17 |
.08 |
.01 |
3.91 |
II |
9.65 |
7.21 |
642 |
5.67 |
5.32 |
5.07 |
4.89 |
4.74 |
4.54 |
4,40 |
4,10 |
3.86 |
3.78 |
3.71 |
3.60 |
12 |
,33 |
6,93 |
5.95 |
.4! |
.06 |
4.82 |
.64 |
40 |
,30 |
.16 |
3.86 |
.62 |
.54 |
.47 |
.36 |
13 |
.07 |
,70 |
.74 |
.2! |
4.86 |
.62 |
.44 |
.30 |
.10 |
3.96 |
.66 |
.43 |
.34 |
.27 |
.17 |
14 |
8.86 |
46 |
.04 |
.70 |
.46 |
.28 |
.14 |
3.94 |
.80 |
.51 |
47 |
.18 |
.1 1 |
.00 | |
15 |
.68 |
.36 |
.42 |
4.89 |
,56 |
.32 |
.14 |
.00 |
.80 |
.67 |
47 |
.13 |
.05 |
2.98 |
2.87 |
16 |
.53 |
.23 |
49 |
.77 |
,44 |
40 |
.03 |
3.89 |
.69 |
.55 |
46 |
.02 |
2.93 |
.86 |
.75 |
17 |
.40 |
.11 |
,18 |
.67 |
,34 |
.10 |
3.93 |
.79 |
.59 |
46 |
.16 |
2.92 |
.83 |
.76 |
.65 |
18 |
29 |
,01 |
.09 |
48 |
45 |
.01 |
.84 |
.71 |
41 |
.37 |
.08 |
.84 |
.75 |
.68 |
.57 |
19 |
.18 |
5.93 |
.01 |
40 |
.17 |
3.94 |
.77 |
.63 |
.43 |
.30 |
.00 |
.76 |
.67 |
.60 |
.49 |
20 |
,10 |
.85 |
4,94 |
.43 |
.10 |
.87 |
.70 |
46 |
47 |
,23 |
2.94 |
.69 |
.61 |
.54 |
.42 |
21 |
8.02 |
5.78 |
4.87 |
4.37 |
4.04 |
3.81 |
3.64 |
341 |
3.31 |
' 3.17 |
2.88 |
2.64 |
2.55 |
: .18 |
2 *6 |
22 |
7.95 |
.72 |
.82 |
.31 |
3.99 |
.76 |
.59 |
.45 |
46 |
.12 |
.83 |
.58 |
.50 |
.42 |
Jl |
23 |
,88 |
.66 |
.76 |
46 |
.94' |
.71 |
.54 |
.4! |
41 |
.07 |
.78 |
.54 |
.45 |
.37 |
.26 |
24 |
.82 |
.61 |
.72 |
42 |
,90 |
.67 |
.50 |
.36 |
.17 |
03 |
.74 |
.49 |
.40 |
.33 |
,21 |
25 |
.77 |
.57 |
.68 |
.18 |
.86 |
.63 |
.46 |
42 |
.13 |
2.99 |
.70 |
.4S |
.36 |
29 | |
26 |
.72 |
43 |
.64 |
.M |
,82 |
49 |
.42 |
49 |
.09 |
.96 |
.66 |
.42 |
J3 |
.25 | |
27 |
.68 |
,49 |
.60 |
.11 |
,78 |
46 |
49 |
.26 |
.06 |
.93 |
.63 |
48 |
29 |
,22 | |
28 |
,64 |
.45 |
47 |
.07 |
.75 |
43 |
.36 |
.23 |
.03 |
.90 |
.60 |
.35 |
.26 | ||
29 |
.60 |
.42 |
44 |
.04 |
.73 |
40 |
.33 |
40 |
.00 |
.87 |
.57 |
43 |
.23 |
16 | |
30 |
,56 |
49 |
41 |
.02 |
.70 |
.47 |
.30 |
.17 |
2,98 |
.84 |
.55 |
.30 |
.21 |
.13 |
.01 |
40 60 120 i 03 |
7.31 .08 6.85 i .63 |
5.18 4.98 ,79 .61 |
4.31 .13 3.95 78 |
3.83 .65 .48 |
3. SI .34 .18 .02 |
349 .12 2.96 .80 |
3.12 2.95 .80 .64 |
2.99 ,82 .67 ,51 |
2.80 .63 .48 42 |
2M .50 J4 .18 |
2.37 40 .04 1.88 |
2,11 1.94 .77 .59 |
2.02 1.84 .66 .47 |
1.94 .75 .56 4!_i |
1.80 .60 48 .00 | |
Tablica 5. Wartości <P (») dystrybuanty rozkładu normalnego N{0, 1)
U |
0,00 |
0,01 |
0,02 |
0,03 |
0,04 |
0,05 |
0,06 |
0,07 |
0,08 |
0,09 |
0,0 |
0,5000 |
0,5040 |
0,5080 |
0,5120 |
0,5160 |
0,5199 |
0,5239 |
0,5279 |
0,5319 |
0,5359 |
0,1 |
,5398 |
,5438 |
,5478 |
,5517 |
,5557 |
,5596 |
,5636 |
,5675 |
,5714 |
,5753 |
0,2 |
,5793 |
,5832 |
,5871 |
,5910 |
,5948 |
,5987 |
,6026 |
,6064 |
,6103 |
,6141 |
0,3 |
,6179 |
,6217 |
,6255 |
,6293 |
,6331 |
,6368 |
,6406 |
,6443 |
,6480 |
,6517 |
0,4 |
• ,6554 |
,6591 |
,6628 |
,6664 |
,6700 |
,6736 |
,6772 |
,6808 |
,6844 |
,6879 |
0,5 |
,6915 |
,6950 |
,6985 |
,7019 |
,7054 |
,7088 |
,7123 |
,7157 |
,7190 |
7224 |
0,6 |
,7257 |
,7290 |
,7324 |
,7357 |
,7389 |
,7422 |
,7454 |
,7486 |
,7517 |
,7549 |
0,7 |
,7580 |
,7611 |
,7642 |
,7673 |
,7704 |
,7734 |
,7764 |
,7794 |
,7823 |
,7852 |
0,8 |
,7881 |
,7910 |
,7939 |
,7967 |
,7995 |
,8023 |
,8051 |
,8078 |
,8106 |
,8133 |
0,9 |
,8159 |
,8186 |
,8212 |
,8238 |
,8264 |
,8289 |
,8340 |
,8340 |
,8365 |
,8389 |
1,0 |
0,8413 |
0,8438 |
0,8461 |
0,8485 |
0,8508 |
0,8531 |
0,8554 |
0,8577 |
0,8599 |
0,8621 |
1,1 |
,8643 |
,8665 |
,8686 |
,8708 |
,8729 |
,8749 |
,8770 |
,8790 |
,8810 |
,8830 |
1,2 |
,8849 |
,8869 |
,8888 |
,8907 |
,8925 |
,8944 |
,8962 |
,8980 |
,8997 |
,9015 |
1,3 |
,9032 |
,9049 |
,9066 |
,9082 |
,9099 |
,9115 |
,9131 |
,9147 |
,9162 |
,9177 |
1,4 |
,9192 |
,9207 |
,9222 |
,9236 |
,9251 |
,9265 |
,9279 |
,9292 |
,9306 |
,9319 |
1,5 |
,9332 |
,9345 |
,9357 |
,9370 |
,9382 |
,9394 |
,9406 |
,9418 |
,9429 |
,9441 |
1,6 |
,9452 |
,9463 |
,9474 |
,9484 |
,9495 |
,9505 |
,9515 |
,9525 |
,9535 |
,9545 |
1,7 |
,9554 |
,9564 |
,9573 |
,9582 |
,9591 |
,9599 |
,9608 |
,9616 |
,9625 |
,9633 |
1,8 |
,9641 |
,9649 |
,9656 |
,9664 |
,9671 |
,9678 |
,9686 |
,9693 |
,9699 |
,9706 |
1,9 |
,9713 |
,9719 |
,9726 |
,9732 |
,9738 |
,9744 |
2150 |
,9756 |
,9761 |
,9767 |
2,0 |
0,9772 |
0,9779 |
0,9783 |
0,9788 |
0,9793 |
0,9798 |
0,9803 |
0,9808 |
0,9812 |
0,9817 |
2,1 |
,9821 |
,9826 |
,9830 |
,9834 |
,9838 |
,9842 |
,9846 |
,9850 |
,9854 |
,9857 |
12 |
,9861 |
,9864 |
,9868 |
,9871 |
,9875 |
,9878 |
,9881 |
,9884 |
,9887 |
,9890 |
2,3 |
,9893 |
,9896 |
,9898 |
,9901 |
,9904 |
,9906 |
,9909 |
,9911 |
,9913 |
,9916 |
2,4 |
,9918 |
,9920 |
,9922 |
,9925 |
,9927 |
,9929 |
2931 |
,9932 |
,9934 |
,9936 |
2,5 |
,9938 |
,9940 |
,9941 |
,9943 |
,9945 |
,9946 |
294 8 |
,9949 |
,9951 |
,9952 |
2,6 |
,9953 |
,9955 |
,9956 |
,9957 |
,9959 |
,9960 |
,9961 |
,9962 |
,9963 |
,9964 |
2,7 |
,9965 |
,9966 |
,9967 |
,9968 |
,9969 |
,9970 |
291 \ |
,9972 |
2913 |
,9974 |
2,8 |
,9974 |
,9975 |
,9976 |
,9977 |
,9977 |
,9978 |
2919 |
-,9979 |
,9980 |
,9981 |
2,9 |
,9981 |
,9982 |
,9982 |
,9983 |
,9984 |
,9984 |
,9985 |
,9985 |
2986 |
,9986 |
Tablica 6. Kwantyle u (jp) rzędu p rozkładu normalnego N (0, 1)
P |
0,90 |
0,95 |
0,975 |
0,99 |
0,995 |
u{p) |
1,28 |
1,64 |
1,96 |
2,33 |
2,58 |