/!«• 0.995 T » *> l i c » >)
. | |||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
10 |
12 ' |
20 |
40 |
60 |
100 |
00 | |
1 2 |
i 98,0 |
199,0 |
199,0 |
199.0 |
199.0 |
199,0 |
199,0 |
199,0 |
199,0 |
199.0 |
199,0 |
199.0 |
199,0 |
199.0 |
200,0 |
3 |
55,6 |
49.8 |
47,5 |
46,2 |
45,4 |
44,8 |
44,4 |
44.1 |
43.7 |
43.4 |
42.8 |
42,3 |
42.1 |
42,0 |
41,8 |
4 |
31J |
26,3 |
24.3 |
234 |
22.5 |
22.0 |
21.6 |
21,4 |
21.0 |
20.7 |
20,2 |
19,8 |
19,6 |
19,5 |
19.3 |
5 |
22,8 |
18.3 |
16,5 |
15,6 |
14.9 |
14.5 |
14.2 |
14.0 |
13.6 |
13.4 |
12.9 |
12,5 |
12,4 |
12.3 |
12.1 |
6 |
18.6 |
14,5 |
12,9 |
12.0 |
II.S |
U.l |
10.8 |
10.6 |
10.2 |
10.0 |
9.59 |
9.24 |
9.12 |
9.03 |
8.88 |
7 |
16.2 |
12.4 |
10,9 |
10.0 |
9.52 |
9,16 |
8.89 |
8.68 |
8.38 |
8.18 |
7.75 |
7.42 |
7.31 |
122 |
7,08 |
8 |
14,7 |
11.0 |
9,60 |
8.81 |
8,30 |
7.95 |
7.69 |
7,50 |
7.21 |
7.01 |
6.61 |
6.29 |
6.18 |
6.09 |
5.95 |
9 |
13.6 |
1(1.1 |
8.72 |
7,96 |
7.47 |
.13 |
6.88 |
6,69 |
6.42 |
6.23 |
5.83 |
5.52 |
5.41 |
5.32 |
.19 |
•• 10 |
12.8 |
9.43 |
.08 |
.34 |
6.87 |
6.54 |
.30 |
.12 |
. 5,85 |
5.66 |
.27 |
4.97 |
4.86 |
4.77 |
4,64 |
11 |
12.2 |
8.91 |
7.60 |
6.88 |
6.42 |
6,10 |
5,86 |
5.68 |
5.42 |
5.24 |
4,86 |
4.55 |
4,44 |
4.36 |
4.23 |
12 |
11.8 |
,5! |
,23 |
.52 |
.07 |
5;76 |
,52 |
,35 |
,09 |
4.91 |
.53 |
.23 |
.12 |
.04 |
3,90 |
13 |
,4 |
.19 |
6,93 |
.23 |
5.79 |
.48 |
45 |
.08 |
4,82 |
.64 |
21 |
3.97 |
3.87 |
3.78 |
.65 |
U |
.1 |
7.92 |
.68 |
.00 |
.56 |
.26 |
.03 |
4.86 |
.60 |
.43 |
.06 |
.76 |
.66 |
.57 |
.44 |
li |
10.8 |
,70 |
,48 |
5.80 |
.37 |
.07 |
4.85 |
.67 |
,42 |
.25 |
3,88 |
,58 |
.48 |
.39 |
.26 |
Ib |
,6 |
,51 |
,30 |
.64 |
,21 |
4.91 |
.69 |
.52 |
.27 |
.10 |
.73 |
.44 |
.33 |
.25 |
.11 |
17 |
,4 |
.35 |
,16 |
.50 |
,07 |
,78 |
.56 |
.39 |
.14 |
3.97 |
.61 |
,31 |
.21 |
.12 |
2,98 |
18 |
.2 |
.21 |
.03 |
.37 |
4.96 |
.66 |
.44 |
.28 |
.03 |
,86 |
,50 |
.20 |
,10 |
.01 |
,87 |
19 |
,1 |
,09 |
5,92 |
47 |
.85 |
.56 |
.34 |
,18 |
3.93 |
.76 |
,40 |
.11 |
.00 |
2,91 |
,78 |
20 |
9,94 |
6.99 |
,82 |
.17 |
,76 |
.47 |
.26 |
,09 |
.85 |
.68 |
.32 |
.02 |
2 92 |
.83 |
.69 |
21 |
9,83 |
6.89 |
5.73 |
5.09 |
4.68 |
4.39 |
4.18 |
4.01 |
3.77 |
3.60 |
3.24 |
2.95 |
2.84 |
2.75 |
2,61 |
22 |
,73 |
.81 |
.65 |
.02 |
.61 |
.32 |
.11 |
3.94 |
.70 |
.54 |
.18 |
.88 |
.77 |
.69 |
.55 |
23 |
,63 |
.73 |
.58 |
4.95 |
.54 |
46 |
.05 |
.88 |
.64 |
.47 |
.12 |
.82 |
,71 |
,62 |
.48 |
24 |
.55 |
.66 |
.52 |
.89 |
.49 |
40 |
3.99 |
.83 |
.59 |
.42 |
.06 |
.77 |
,66 |
,57 |
.43 |
23 |
.48 |
.60 |
.46 |
.84 |
.43 |
.15 |
.94 |
,78 |
.54 |
.37 |
.01 |
.72 |
.61 |
.52 |
.38 |
26 |
.41 |
.54 |
.41 |
.79 |
.38 |
.10 |
.89 |
.73 |
.49 |
.33 |
2.97 |
.67 |
.56 |
.47 |
.33 |
27 |
.34 |
.49 |
.36 |
.74 |
.34 |
.06 |
.85 |
.69 |
.45 |
.28 |
.93 |
.63 |
.52 |
.43 |
.29 |
28 |
.28 |
.44 |
.32 |
.7(1 |
.30 |
,02 |
.81 |
.65 |
.41 |
.25 |
,89 |
.59- |
..48 |
.39 |
,25 |
29 |
,23 |
,40 |
.28 |
.66 |
.26 |
3,98 |
.77 |
.61 |
.38 |
.21 |
.86 |
.56 |
.45 |
.36 |
.21 |
30 |
.18 |
.35 |
44 |
.62 |
43 |
.95 |
.74 |
.58 |
.34 |
.18 |
.82 |
.52 |
.42 |
.32 |
.18 |
40 |
8.83 |
6.07 |
4.98 |
4,37 |
3,99 |
3.71 |
3.51 |
3,35 |
3.12 |
2.95 |
2,60 |
2.30 |
2.18 |
2,09 |
1.93 |
60 |
.49 |
5.80 |
.73 |
.14 |
.76 |
.49 |
.29 |
.13 |
2.90 |
.74 |
,39 |
.08 |
1.96 |
1.86 |
.69 |
120 |
.18 |
.54 |
40 |
3.92 |
.55 |
.29 |
,09 |
2.94 |
.71 |
.55 |
.19 |
1.87 |
.75 |
.64 |
.43 |
X |
7.88 |
.30 |
48 |
.72 |
,35 |
.09 |
2,90 |
,74 |
,52 |
J6 |
,00 |
.67 |
.53 |
.40 |
.00 |
P, | |||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
10 |
12 |
20 |
40 |
60 |
100 |
rj | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 60 120 i |
98.5 34.1 21.2 16.3 13.7 12,2 11.3 10.6 .0 9.65 ,33 .07 8.86 .68 .53 .40 29 .18 ,10 8.02 7,95 ,88 .82 .77 .72 .68 .64 .60 .56 7.31 ,08 6,85 .63 |
99.0 30.8 18.0 13.3 10.9 9.55 8,65 .02 7.56 7.21 6.93 ,70 .51 .36 .23 .11 .01 5.93 .85 5.78 .72 .66 .61 .57 .53 .49 .45 .42 29 5.18 4.98 .19 .61 |
992 292 16.7 12.1 9.78 8.45 7,59 6.99 25 6.22 5.95 .74 26 .42 .29 ,18 .09 .01 4.94 4.87 .82 .76 .72 .68 .64 .60 .57 .54 .51 4.31 .13 3.95 78 |
99.2 28.7 16.0 11.4 9.15 7.85 .01 6.42 5,99 5.67 .41 .21 .04 4.89 .77 .67 .58 .50 .43 4.37 ,31 .26 .22 .18 .14 .11 .07 .04 .02 3.83 .65 .48 •33 |
99.3 28.2 15.5 11.0 8.75 7.46 6.63 .06 5.64 5.32 .06 4.86 .70 ,56 .-14 ,34 .25 .17 .10 4.04 3.99 .94' .90 .86 .82 .78 .75 .73 .70 3.51 .34 .18 .02 |
99.3 27.9 15.2 10.7 8.47 7.19 6.37 5.80 .39 5.07 4.82 .62 .46 .32 .20 .10 .01 3.94 .87 3.81 .76 .7! ,67 .63 .59 .56 .53 .50 .47 3.29 .12 2.96 .80 |
99.4 27.7 15.0 10.5 8.26 6.99 .18 5.61 .20 4.89 .64 ,44 .28 .14 .03 3.93 .84 .77 .70 3.64 .59 .54 .50 .46 .42 -39 .36 .33 .30 3.12 2.95 ,80 .64 |
99.4 27.5 14.8 10.3 8.10 6.84 .03 5.47 .06 4,74 .511 .30 .14 .00 3.89 .79 .71 .63 .56 3.51 .45 .41 .36 .32 .29 .26 .23 .20 .17 2.99 ,82 .67 .51 |
99.4 27.2 14.5 KU 7.87 6.62 5.81 .26 4,85 4.54 ,30 .10 3.94 .80 .69 .59 .51 .43 .37 3.31 .26 .21 .17 .13 .09 .06 .03 .00 2.98 2.80 .63 .48 .32 |
99.4 27.1 14.4 9.89 7.72 6.47 5.67 .11 4.71 4,40 .16 3.96 .80 .67 .55 .46 .37 .30 .23 ‘ 3.17 .12 ,07 .03 2.99 .96 .93 .90 .87 .84 2.66 .50 .34 .18 |
99.4 26.7 14.0 9.55 7.40 6.16 5.36 4.8! .41 4,10 3.86 .66 .51 .37 .26 .16 .08 .(KI 2.94 2.88 .83 .78 .74 .70 .66 .63 .60 .57 .55 2.37 .20 .04 1.88 |
99.5 26.4 13.7 9.29 7.14 5.91 .12 4.57 .17 3.86 .62 .43 .27 .13 .02 2.92 .84 .76 .69 2.64 .58 .54 .49 .45 .42 .38 .35 .33 .30 2.11 1.94 .77 .59 |
‘W. 5 26.3 13.7 9.20 7.06 5.82 .03 4.48 .08 3.78 .54 .34 .18 .05 2.93 .83 .75 .67 .61 2.55 .50 .45 .40 .36 .33 .29 .26 .23 .21 2.02 1.84 .66 .47 |
99.5 26.2 13.6 9.13 6.99 5.75 4.96 .42 .01 3.71 .47 .27 .11 2.98 .86 .76 .68 .60 .54 2.48 .42 .37 .33 .29 .25 .22 .19 .16 .1? 1.94 .75 .56 |
99.5 26.1 13.5 9.02 6.88 5.6J 4.86 .31 3.91 3.60 .36 .17 .00 2.87 .75 .65 .57 .49 .42 2.36 Jl .26 .21 .17 .13 .10 .06 .03 .01 1.80 .60 J8 |
— |
.......— |
------- |
----- |
. --- |
T---------' |
Tablica 5. Wartości <P (») dystrybuanty rozkładu normalnego N{0, 1)
U |
0,00 |
0,01 |
0,02 |
0,03 |
0,04 |
0,05 |
0,06 |
0,07 |
0,08 |
0,09 |
0,0 |
0,5000 |
0,5040 |
0,5080 |
0,5120 |
0,5160 |
0,5199 |
0,5239 |
0,5279 |
0,5319 |
0,5359 |
0,1 |
,5398 |
,5438 |
,5478 |
,5517 |
,5557 |
,5596 |
,5636 |
,5675 |
,5714 |
,5753 |
0,2 |
,5793 |
,5832 |
,5871 |
,5910 |
,5948 |
,5987 |
,6026 |
,6064 |
,6103 |
,6141 |
0,3 |
,6179 |
,6217 |
,6255 |
,6293 |
,6331 |
,6368 |
,6406 |
,6443 |
,6480 |
,6517 |
0,4 |
• ,6554 |
,6591 |
,6628 |
,6664 |
,6700 |
,6736 |
,6772 |
,6808 |
,6844 |
,6879 |
0,5 |
,6915 |
,6950 |
,6985 |
,7019 |
,7054 |
,7088 |
,7123 |
,7157 |
,7190 |
7224 |
0,6 |
,7257 |
,7290 |
,7324 |
,7357 |
,7389 |
,7422 |
,7454 |
,7486 |
,7517 |
,7549 |
0,7 |
,7580 |
,7611 |
,7642 |
,7673 |
,7704 |
,7734 |
,7764 |
,7794 |
,7823 |
,7852 |
0,8 |
,7881 |
,7910 |
,7939 |
,7967 |
,7995 |
,8023 |
,8051 |
,8078 |
,8106 |
,8133 |
0,9 |
,8159 |
,8186 |
,8212 |
,8238 |
,8264 |
,8289 |
,8340 |
,8340 |
,8365 |
,8389 |
1,0 |
0,8413 |
0,8438 |
0,8461 |
0,8485 |
0,8508 |
0,8531 |
0,8554 |
0,8577 |
0,8599 |
0,8621 |
1,1 |
,8643 |
,8665 |
,8686 |
,8708 |
,8729 |
,8749 |
,8770 |
,8790 |
,8810 |
,8830 |
1,2 |
,8849 |
,8869 |
,8888 |
,8907 |
,8925 |
,8944 |
,8962 |
,8980 |
,8997 |
,9015 |
1,3 |
,9032 |
,9049 |
,9066 |
,9082 |
,9099 |
,9115 |
,9131 |
,9147 |
,9162 |
,9177 |
1,4 |
,9192 |
,9207 |
,9222 |
,9236 |
,9251 |
,9265 |
,9279 |
,9292 |
,9306 |
,9319 |
1,5 |
,9332 |
,9345 |
,9357 |
,9370 |
,9382 |
,9394 |
,9406 |
,9418 |
,9429 |
,9441 |
1,6 |
,9452 |
,9463 |
,9474 |
,9484 |
,9495 |
,9505 |
,9515 |
,9525 |
,9535 |
,9545 |
1,7 |
,9554 |
,9564 |
,9573 |
,9582 |
,9591 |
,9599 |
,9608 |
,9616 |
,9625 |
,9633 |
1,8 |
,9641 |
,9649 |
,9656 |
,9664 |
,9671 |
,9678 |
,9686 |
,9693 |
,9699 |
,9706 |
1,9 |
,9713 |
,9719 |
,9726 |
,9732 |
,9738 |
,9744 |
2150 |
,9756 |
,9761 |
,9767 |
2,0 |
0,9772 |
0,9779 |
0,9783 |
0,9788 |
0,9793 |
0,9798 |
0,9803 |
0,9808 |
0,9812 |
0,9817 |
2,1 |
,9821 |
,9826 |
,9830 |
,9834 |
,9838 |
,9842 |
,9846 |
,9850 |
,9854 |
,9857 |
12 |
,9861 |
,9864 |
,9868 |
,9871 |
,9875 |
,9878 |
,9881 |
,9884 |
,9887 |
,9890 |
2,3 |
,9893 |
,9896 |
,9898 |
,9901 |
,9904 |
,9906 |
,9909 |
,9911 |
,9913 |
,9916 |
2,4 |
,9918 |
,9920 |
,9922 |
,9925 |
,9927 |
,9929 |
2931 |
,9932 |
,9934 |
,9936 |
2,5 |
,9938 |
,9940 |
,9941 |
,9943 |
,9945 |
,9946 |
294 8 |
,9949 |
,9951 |
,9952 |
2,6 |
,9953 |
,9955 |
,9956 |
,9957 |
,9959 |
,9960 |
,9961 |
,9962 |
,9963 |
,9964 |
2,7 |
,9965 |
,9966 |
,9967 |
,9968 |
,9969 |
,9970 |
291 \ |
,9972 |
2913 |
,9974 |
2,8 |
,9974 |
,9975 |
,9976 |
,9977 |
,9977 |
,9978 |
2919 |
-,9979 |
,9980 |
,9981 |
2,9 |
,9981 |
,9982 |
,9982 |
,9983 |
,9984 |
,9984 |
,9985 |
,9985 |
2986 |
,9986 |
Tablica 6. Kwantyle u (jp) rzędu p rozkładu normalnego N (0, 1)
P |
0,90 |
0,95 |
0,975 |
0,99 |
0,995 |
u{p) |
1,28 |
1,64 |
1,96 |
2,33 |
2,58 |