61873 s140 141

61873 s140 141



141)

141)

' 2kxi +(k + l)x2 = 2

xi + x2 - x3 = 0

81.

, ^'2:1 + (2k — l)x2 = 1

f x + y + x = 1 < x + y + kz = 1 [ kx + y + kz = k

83. •

' x + 2y + z = 4

2x + 5y + (k + 2 )z = 12

85. -

2x + 4y + 2z = 8 - k

,    —x + (k2 - l)z = 4


—Xi + (fc + 1)X2 = 1 - 2:2 + (k - 2)x3 = O . *1 + (k - l)x2 + 2x3 = 1

x + y + z = -1 kx — y + z = 3 5x + 5y + 3z = — 7 { 2x + (1 — k)y - z =    - 6

Xi - 2x2 + 4x3 = 1 x2 + 2x3 = -1 Xi — 3x2 + 2x3 = , 2xi — 4x2 + kx3 = 2

86.


xx + (3A: - l)x2 + (k - 7)x3 = -1 —x\ + (1 — k)x 2 + (1 — k)x3 =(k - l)x2 + (k - 3)x3 = -2

Xi + x2 - x3 = 3

2x\ + (k + 6)x2 + (2A; + 6)23 = 4k + 4 —X\ - x2 + 2kx3 = 2k + 6 3xi + (k + 7)x2 + (2 k + 5)13 = 4 k + 7

X\ + 2x2 + x3 O xi + (fc + l)x3 = k + 1 -kx\ - 2kx2 = k + 2 . kx 1 + (2k + k2)x3 = k2 + 2k - 1

' (1 - k)x 1 + (2 - 2k)x2 + x3 = k + 2 -xj - 4x2 + {k1)2:3 = k + 1

—2kx2 + (k2 + k)x 3 = k2 + 2fc + 2 3A:xi + 4fcx2 + (2k + k2)x3 = k2 - 5

x\ + x2 x3 — O

kx 2 + 2:3 + 2x4 = k X3 "ł" kx41

X2 4- X3 + 2X4 = 1


' 2xi - x2 + x4 = O

kx i+x3-2x4=0    gi<

x’i + 2:2 - 2:3 + 2:4 = O 2xi - x-2 + 5x3 = O

HI


Znaleźć takie wartości parametru fc, dla których dany układ równań liniowych nic ma rozwiązania:


92.


kx 1 + T2 + T3 = k

< 2xi + kx2 t3 3

X2 + X3 = 0


Xi + X2 — X3 = 1

93. x\ + 2x2 — kx3 = 2

kXy + X2 + X3 = k -f" 1


94.


x\ + 2x2 + t3 1

<    — X\X2 + kx3 = —4

-x2 + 2x3 = 3

96.

97.

Ti + 2t2 + t3 —2

kx2 + t3 = 2

. —2tx -

(2fc + 4)t2 + (fc — 2)t3 = fc

-Ti + 3t2 + t3 = -2

Ti + (fc

— 3)t2 + (2 fc l)x3 = fc — 1

k 2ti - (k + 6)t2 — (k + 5)t3 = 7

xi + 2t2 - t3 = 1 (k + 1)t2 + (A: + 1)t3 = —Ti + (—2k 4)t 2 + 2t3 = —k


.Tl + T2 + 2t3 kx\ + 2kxkx2 + (2 — k)x3 ,kx\ + 2kx2 + 4t3


= 1 = 2


98.


, 2ti + (fc + 5)t2 + (k — 1)t3 = k + 2


99.


Ti + 2t2 + 3t3 = —2 Ti + kx2 + {k + 1)t3 = 2A; + 1 —Ti + (k - 4)x2 + (—fc - 8)t3 = fc + 7


. -Ti + (4fc - 10)x2 + (-2fc - 20)t3 = 5fc + 20


Ti + kx3 = 3 2ti + kx2 + 2kx3 = k + 9 —Ti — kx2 + (6 + &)t3 = —6 2xi + (4fc + 6)t3 = fc + 6


100.


Wyszukiwarka

Podobne podstrony:
obraz0 4 18. Całki krzywoliniowe 141 J x2ydy = J x2 -x • 1 rfx«
sporządzenia mieszanki, otrzymujemy problem 240xi + 300x2 + 200x3 —» min Xi + 2X2 + X3 > 2 4xx +
74423 s136 137 136 33. Xi + 2X2 — X3 — xi — O XI + 2x2 + X4 = 4 —X - 2x2 + 2x3 + 4x4 = 5 35. XI — X2
Scan Pic0300 108 10. Kwadraty x2 X 0 12 3 4 X 7,0 49,000 140 140 140 280 141 421 141 562 14i 7,0
page0281 141 XI!. Pieniądz I kredyt TABL. 54. NALEŻNOŚCI I ZOBOWIĄZANIA ZAGRANICZNE Stan w dn. 31.XI
skanuj0009 (141) // C2A3SUJ t    $bj=e i ¥“; cobok [u]r BOłclć. (1/ iyi 6^016 (uj) l
skanuj0017 (141) oftrmyjMm Cfjmwętwo 40d!Ąf    WKrOć^Pć?

więcej podobnych podstron