141)
141)
' 2kxi +(k + l)x2 = 2 | |
xi + x2 - x3 = 0 |
81. |
, ^'2:1 + (2k — l)x2 = 1 | |
f x + y + x = 1 < x + y + kz = 1 [ kx + y + kz = k |
83. • |
' x + 2y + z = 4 | |
2x + 5y + (k + 2 )z = 12 |
85. - |
2x + 4y + 2z = 8 - k |
, —x + (k2 - l)z = 4
—Xi + (fc + 1)X2 = 1 - 2:2 + (k - 2)x3 = O . *1 + (k - l)x2 + 2x3 = 1
x + y + z = -1 kx — y + z = 3 5x + 5y + 3z = — 7 { 2x + (1 — k)y - z = - 6
Xi - 2x2 + 4x3 = 1 x2 + 2x3 = -1 Xi — 3x2 + 2x3 = k , 2xi — 4x2 + kx3 = 2
86.
xx + (3A: - l)x2 + (k - 7)x3 = -1 —x\ + (1 — k)x 2 + (1 — k)x3 = 1 (k - l)x2 + (k - 3)x3 = -2
Xi + x2 - x3 = 3
2x\ + (k + 6)x2 + (2A; + 6)23 = 4k + 4 —X\ - x2 + 2kx3 = 2k + 6 3xi + (k + 7)x2 + (2 k + 5)13 = 4 k + 7
X\ + 2x2 + x3 — O xi + (fc + l)x3 = k + 1 -kx\ - 2kx2 = k + 2 . kx 1 + (2k + k2)x3 = k2 + 2k - 1
' (1 - k)x 1 + (2 - 2k)x2 + x3 = k + 2 -xj - 4x2 + {k — 1)2:3 = k + 1
—2kx2 + (k2 + k)x 3 = k2 + 2fc + 2 3A:xi + 4fcx2 + (2k + k2)x3 = k2 - 5
x\ + x2 x3 — O
kx 2 + 2:3 + 2x4 = k X3 "ł" kx4 — 1
X2 4- X3 + 2X4 = 1
' 2xi - x2 + x4 = O
x’i + 2:2 - 2:3 + 2:4 = O 2xi - x-2 + 5x3 = O
Znaleźć takie wartości parametru fc, dla których dany układ równań liniowych nic ma rozwiązania:
kx 1 + T2 + T3 = k
< 2xi + kx2 — t3 — 3
X2 + X3 = 0
Xi + X2 — X3 = 1
93. x\ + 2x2 — kx3 = 2
kXy + X2 + X3 = k -f" 1
x\ + 2x2 + t3 — 1
< — X\ — X2 + kx3 = —4
-x2 + 2x3 = 3
96.
97.
Ti + 2t2 + t3 — —2 | |
kx2 + t3 = 2 | |
. —2tx - |
(2fc + 4)t2 + (fc — 2)t3 = fc |
-Ti + 3t2 + t3 = -2 | |
Ti + (fc |
— 3)t2 + (2 fc — l)x3 = fc — 1 |
k 2ti - (k + 6)t2 — (k + 5)t3 = 7
xi + 2t2 - t3 = 1 (k + 1)t2 + (A: + 1)t3 = k —Ti + (—2k — 4)t 2 + 2t3 = —k
.Tl + T2 + 2t3 kx\ + 2kx3 kx2 + (2 — k)x3 ,kx\ + 2kx2 + 4t3
= 1 = 2
, 2ti + (fc + 5)t2 + (k — 1)t3 = k + 2
Ti + 2t2 + 3t3 = —2 Ti + kx2 + {k + 1)t3 = 2A; + 1 —Ti + (k - 4)x2 + (—fc - 8)t3 = fc + 7
. -Ti + (4fc - 10)x2 + (-2fc - 20)t3 = 5fc + 20
Ti + kx3 = 3 2ti + kx2 + 2kx3 = k + 9 —Ti — kx2 + (6 + &)t3 = —6 2xi + (4fc + 6)t3 = fc + 6
100.