ROZDZIAŁ 7. PRZEKSZTAŁCENIE LINIOWE
b) MiM =
• : • Af |
"l |
0 |
0 |
0 |
r | |||||||||||
1 -1 |
0 |
1 |
f |
1 |
1 |
0 |
0 |
0 |
‘i |
0 |
1 | |||||
1 1 |
0 |
1 |
0 |
, A |
= |
0 |
1 |
1 |
0 |
0 |
, B = |
1 |
1 |
0 | ||
1 -1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 | |||||
_0 |
0 |
0 |
1 |
0 | ||||||||||||
[1 |
0 f |
"l |
0 |
0 |
r | |||||||||||
1 |
1 0 |
1 |
0 |
1 | ||||||||||||
A = |
1 |
1 |
0 |
B = |
1 |
1 |
0 |
0 | ||||||||
2 |
2 0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 | ||||||||
2 |
0 2 |
0 |
0 |
1 |
0 |
7.09. Dane są bazy A, B, C przestrzeni R", R\ R"7 i macierze M£(<p) , Mg(» przekształceń liniowych (p\R17 -> R*, ^:R*->RW. Znaleźć macierze
Mq{u/o cp), Ml(y/o (p).
a) MA(jp) =
"-1 |
1 |
0" |
‘ 2 |
1 |
1~ | |
2 |
0 |
2 |
, M?(r) = |
-1 |
1 |
0 |
0 |
-2 |
-1 |
1 |
-1 |
1 |
"l 1 2" |
"1-3 2 |
"21 l" | |||
A = |
1 2 1 |
i b= |
-1 2 -1 |
y C = |
-1 0 -1 |
1 1 3 |
_ 2 10 |
1 1 1 |
2 0 -1
-1 2 1
b) Mś(<p) =
A ==
1 |
1 2 |
1 |
2:v, 1 |
1 |
1 3 |
A =
2 3 1 2
7.10. Dane-są macierz* y/-.Rk-+Rm i Mf(yf°<p) ■
a) M£0) =
B-
1 |
1 |
0 |
-1 |
0 |
0 |
1 0
-2 1
1 -1
A
"l |
1 |
2" |
" 2 |
1 |
1 |
' - - | ||||
1 |
2 |
1 |
, b = |
" 2 2 -1 1_ |
p C= |
-1 |
0 -1 |
b) M£0) = | ||
.1 |
1 |
3 |
1 |
1 |
1 |
' WAŁ'' |
: |
c) M£0) =
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 1 0 1 10 0 1
A =
140-