B
SOLUTIONS to Test 2
11.06.07
Task 1 (lOp.) Find the limits: a) lim-n^x x £lo£&zA
x-*° x Vpl x-*o d
rvX ^ . »— /r>\ 4r
b) lim, x l~x = £
x-+1 x ■* AT
^ ^ it
x-^- V®/ *-=>r -d
- - a ; =
Task 2 (5p.) Find the smallest and lareest value of f(xl = 3x2 -12x + 5 on the interyal [0.3] fł(y)r(ox-da-o x j aso v=a -v^n
f (o)^5-| ?(&>Vq -AQ*2+5-=-T- J £(s) = 2f-36
so s.raoJJLev-4 i*3 ‘-“ł-1 i •^o.np-e^rt- jw| ‘S^ ask 3 (5p.) Compute the the 2-nd degree Taylor polynomial and the remainder term f<
Ti f(x) =
for
1
(1 t 3rf.
at point a = 0 and estimate the value of
wĘm r(c)zrS,.iZ[M^
[iyifj----*u —
T,|0)=A'4y+^X
e,(o^
_ -S^ •12-
ai
(At3c)
-3“
X
e. >x
(A^3)ł " ^
Task 4 (5p.) Calculate the area of the region bounded above by y = ex , bounded below by v = x, and bounded on the sides by x = 0. x = 1.
JU" 1
=tF-—>
flV(1|e%Ux - W1-1=
Task 5 (5p.) Find the volume of the solid of revolution obtained by revolving the region bounded by y = — , x — 1, x = 2 and y = 0 around the x-axis.
j. .. TT- f* A. ------
Tf> Vcrrl l*-fłir=£
Task 6 (5p.) Write out the form of the partial fractions expansion of the rational fimction R(x). Do not determine the numerical values of the coefficients.
R(x)J^i- ^
X3-X2 xz(x-1) ^ Aa
X'f
Task 7 (15p.) Find the following antiderivatives
fffrO-tnb-l f’W'- >T ( ,
;) ^ln|x|dx F g,w„nr( " =|^UW-
ł\a-
b), J-~— dx 3
JxJ+8
"kI
=)J
x +2x + 20
fTl4_| |
r | ||
" J (xm)ł-*->H |
' 1<1 |
' dtr \ W | |
ifUl fcł C * |
Pt? . Ktl arc Km t== 4. q T |
c k |