A SOLUTIONS to Test 2 11.06.07
l.Find the limits: a) lim
fO\$D
**>o A
2. Find the intervals of concavity and the inflectionpoints of f(x) = — x + —x -3x.
■[MMI
f>»xŁ+ * -6 'Ąęzif AzMZ^-P? EJSp||§ ’
f"(x) >0 , Łomoe^ f cw Xc *
t x - '3 y £ un f le cU.o i* p oiVJ_s
3. Compute the 2-nd degree Taylor polynomial and the remainder term for f(x) = —- at
VI-x
point a = 0 and estiipate the value of
f(»M
WY'
A
W-S
*SMR
SS9'\
nft' ffcźź % i' i- -(® od
4. Calculate the area of the region bounded by the curves: y = x2 and y-2x:-x.
_ A
' 5
V-2a--o b--l Ai ( 'j * d' - ^ • T ' — I
*(/-0--O T» °
5. Find the volume of the solid of revolution obtaincd by revolving the region bounded by y = x3 , x = 0 and y = 8 around the x-axis.
^ . rjv*,«m
^ v mH ' < o ■■
6. Write out the form of the partial fractions expansion of the rational function R(x). Do not determine the numerical values of the coefficients.
R(x)- 2 -
X'5-
7< ^
x2(x -2)(x + 4)
7. Find the following antiderivatives:
, r 2x . (
a ^(x2+8)7 )
djt = #/< V.?
b) jlHB*)dx- S HłO= ClA-^-z
i