SOLUTIONS lo Tcsl 2 X
11.06.07
Tusk 1 (1 Op.) lind ihc llmils: a) lim--jt /^£-11 JUm — - a O
>-*“ x + e ^ J »^>«o Iłor
b) lim,(sin */'. g* (?-%2. -jr1 &) ' ‘ f =
f - Vip* ■=¥%r^* -%0-^f^/-0/
2. Find the intervals of concavity and the inflection points of f(x) = — x4 --x3 4-x2 +1.
Alwo.i^ COHU^A, O0 pOĆrUi
' <*s *f- 4* o
Task 3 (5p.) Compute the the 2-nd degree Taylor polynomial and the remainder term for f(x) = x e* at point a = 0 and estimate the value of 'tfe, j -j- - 0 ^ 'X f ^ ^
o
e - i
0 e'i «-/-t '
wV3 ,Task 4 (5p.) Calculate the area of the region bounded belowby y = 4x2, bounded aboveby 'it y = x2 + 3, and bounded on the sides by x = -1, x = 1.
Pff C#*l
PY0*3*ł»«'®c I sfrfe-- 1 (*]"• ii
fsX9 i.
” Task 5 (5p.) Find the volume of the solid of revolution obtained by revolving the region
bounded by y = Vx , x = 1, x = 2 and y = 0 around the x-axis,
' V ’Ttj>Vv * ir p «, - TT ii |\ f[. % . Tl %, % JT
Task 6 (5p.) Write out the form of the partial fractions expansion of the rational function R(x). Do not determine the numerical values of the coeffidents.
R(x) = -
3x + 4
(x — l)2(x — 2) j H (X-D* x'j2 Task 7 (15p.) Find the following antiderivatives
a) H ln|x2 + l|dx J-V " l„ j 11 U,)l\ M - ł-laW- fc tC 1 I ( eli 1 Z.* ł'*>
PO
d/
. ( tsV" I- 4-f 'im / ) ‘•J
9 dJb
1 I - i (xrt hbn &• \d ~
= 1 o-rdTayi-^r + C