plik


ÿþ1 Exercise 4.2 For a given planar force system find: I An equivalent coupe-force system at point A. II. The simplest equivalent force system. Draw the result of reduction on the figure. q1=4 kN/m gð=3 kN/m2 10 kN y 1m x A 3Öð2 kN 2m 17 kNm 15 kN q2=2 kN/m 14 kN 2m 4m The origin of the coordinate system is positioned at point A I. An equivalent couple-force system at point A ·ð Replacing the distributed loads by their resultants. 1 q1=4 kN/m W1 gð=3 kN/m2 F1=10 kN y 1m 2 x *l2 3 W3 F2 A F3 l2 3Öð2 kN W2 2m 15 kN 1 *l2 F6 3 að F5 q2=2 kN/m M1=17 kNm F4=14 kN 2m 4m Project  The development of the didactic potential of Cracow University of Technology in the range of modern construction is co-financed by the European Union within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education. 2 W1 =ð q1 ×ð l1 (q1 =ð 4[kN / m], l1 =ð 4[m]) W1 =ð 4[kN / m]×ð 4[m] =ð 16[kN] 1 W2 =ð q2 ×ð l2 (q2 =ð 2[kN / m], l2 =ð [3m]) 2 1 W2 =ð ×ð 2[kN / m]×ð 3[m] =ð 3[kN] 2 W3 =ð gð ×ð area (gð =ð 3[kN / m2 ], area =ð 1[m]×ð 2[m] =ð 2[m2 ]) W3 =ð 3[kN / m2 ]×ð 2[m2 ] =ð 6[kN] ·ð Resolving the oblique forces into components F2 =ð sin(45°ð) ×ð 3 2[kN] , F3 =ð cos(45°ð) ×ð 3 2[kN] F2 =ð F3 =ð 3[kN] 4 3 Where: cos(að) =ð , sin(að) =ð (see the figure) 5 5 F5 =ð cos(að ) ×ð15[kN] =ð 12[kN] F6 =ð sin(að ) ×ð15[kN] =ð 9[kN] ·ð Determining the sum vector S =ð (Sx , S ,O) y Sx =ð F1 +ð F2 -ð F5 -ðW2 Sx =ð -ð2[kN] S =ð -ðF3 +ð F4 +ð F6 -ðW1 -ðW3 S =ð -ð2[kN] y y S =ð (-ð2[kN],-ð2[kN],O) ·ð Detrmining the total moment about point A + - W1 rW1 F1 W3 rW3 rF1 y 1m x 2m F2 A F3 rF3 rW2 rF5 2m W2 1m F6 rF6 M1 F5 F4 2m 2m 2m Project  The development of the didactic potential of Cracow University of Technology in the range of modern construction is co-financed by the European Union within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education. 3 M =ð (0,0, M ) (for a planar force system) A Az M =ð -ðF1×ð rF1 +ð F3 ×ð rF 3 -ð F5 ×ð rF 5 +ð F6 ×ð rF 6 -ðW1 ×ð rW 1 -ðW2 ×ð rW 2 +ðW3 ×ð rW 3 +ð M1 Az Remark: the moment of F2 and F4 about A equal zero, because their lines of action pass through that point. M =ð -ð10[kN]×ð1[m] +ð 3[kN]×ð 2[m] -ð12[kN]×ð 2[m] +ð 9[kN]×ð 4[m] -ð16[kN]×ð 2[m] -ð 3[kN]×ð1[m] +ð Az +ð 6[kN]×ð1[m] +ð17[kNm] =ð -ð4[kNm] M =ð (0,0,-ð4[kNm]) A ·ð Answer The planar system of forces can be reduced at point A to a coupe-force system comprising one force S =ð (-ð2[kN],-ð2[kN],O) applied at point A, and one couple with a moment M =ð (0,0,-ð4[kNm]) , A II. The simplest equivalent system ·ð S =ð (-ð2[kN],-ð2[kN],O) , M =ð (0,0,-ð4[kNm]) hence the parameter of the system k =ð S oð M =ð 0 A A S ¹ð 0 Ùð k =ð 0 the system can be reduced to a resultant force. ·ð The equation of a central axis $ðP(x, y, z);M =ð 0 P M =ð M +ð S ´ð AP p A point A =ð (0,0,0) point P =ð (x, y,0) 0 =ð M +ð S ´ð AP A vector AP =ð (x, y,0) S =ð (-ð2[kN],-ð2[kN],0) (0,0,0) =ð (0,0,-ð4[kNm]) +ð (0,0,-ð2[kN]×ð y +ð 2[kN]×ð x) ´ð AP =ð ( x , y ,0) 0 =ð -ð4[kNm] -ð 2[kN]×ð y +ð 2[kN]×ð x Þð y =ð x -ð 2[m] S ´ðAP =ð(0,0,-ð2[kN]×ð y+ð2[kN]×ð x) y =ð x -ð 2[m] the central axis (or the line of action of the resultant force.) ·ð Answer The given planar system of forces can be reduced to a resultant force equal to the sum vector, acting along the central y =ð x -ð 2[m] Project  The development of the didactic potential of Cracow University of Technology in the range of modern construction is co-financed by the European Union within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education. 4 q1=4 kN/m gð=3 kN/m2 10 kN y 1m x 3Öð2 kN A 2m W=S(-2[kN],-2[kN]) 17 kNm 15 kN q2=2 kN/m 14 kN 2m 4m Project  The development of the didactic potential of Cracow University of Technology in the range of modern construction is co-financed by the European Union within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education. ] m [ 2 - x = y

Wyszukiwarka

Podobne podstrony:
B06 exercise05 2 DJ
B06 exercise04 1 DJ
B06 homework03 DJ
PASSIVE VOICE revision exercises
DJ Bobo Around The World
exercisespastsimplepastcontinuous
Exercise Programs for Children with Cerebral Palsy
basic combat training military vocabulary exercise
LabA Exercise2?d1997
Middle Pillar Exercise
countable uncountable exercises
DJ Bobo Love Is The Price
LabA Exercise1 CreateCube
exercice questceque vous faites le samedi francuski24 com
DJ Tiesto Biografia
DJ Tomekk?aturing Lil Kim Kimnotyze
ExercisSeqStratXSection

więcej podobnych podstron