a) |
y' = 4y |
b) |
x2y' + ary = 1 | |
c |
2 y' + lOy = 1 |
d) |
(ar + 4y2)dy + 2ydx = 0 | |
e) |
y' + y = e3x |
0 |
ar dy = (ar sin ar — y) dar | |
g) |
y' + 3 x2y = x2 |
h) |
(1 + ex)y' + exy — 0 | |
i) |
y' cos x + y sin a: = 1 |
j) |
ary' + 4y = x3 - ar | |
k) |
x2y' + ar(ar + 2 )y = e |
X |
1) |
ary' + (3ar + l)y = e~3x |
m) |
ydx — 4(ar + y6)dy = |
0 |
n) |
, . l-e~2x y +y = ——- 7 J ex+e~x |
o) |
cos2 x sin x dy 4- (y cos3 x — |
l)dar = 0 | ||
P) |
ydx + (ary + 2y — yex |
)dx — |
0 | |
r) |
ydx + (x + 2xy2 - 2y)dy = |
0 | ||
s) |
y' + 5y = 20 y(0) = |
-- 2 |
0 |
y' = ^rx y(5) = 2 |
u) |
L— + Ri = E i(0) = dt v y |
■■ i0 L |
, R, |
E — stałe |
v) |
y' + y tg ar = cos2 ar |
y( o) = |
-1 | |
w) |
T' = k(T - 50) 7(0) = 200 |
k — stała | ||
x) |
(ar + l)y' +y = ln ar |
y(i): |
= 10 | |
y) |
ar(ar — 2)y' + 2y = 0 |
y( 3) |
- |
6 |
z) |
y' + 2y = f(x) dla /(ar) = ] |
[1. to, |
ar e [0,3] ar G (3, oo) | |
Ż) |
y' + 2ary = /(ar) dla , |
f(x) = |
fo |
, x G [0,1) ', X > 1 |