ÿþ N A J W I K S Z Y I N T E R N E T O W Y Z B I Ó R Z A D A C Z M A T E M A T Y K I
P R Ó B N Y E G Z A M I N M A T U R A L N Y
Z M A T E M A T Y K I
Z E S T A W P R Z Y G O T O W A N Y P R Z E Z S E R W I S
W W W . Z A D A N I A . I N F O
P O Z I O M R O Z S Z E R Z O N Y
1 7 K W I E T N I A 2 0 1 0
C Z A S P R A C Y : 1 8 0 M I N U T
Z A D A N I E 1 ( 3 P K T . )
P o d s t a w o s t r o s Bu p a A B C D S j e s t p r o s t o k t A B C D , a k r a w d z b o c z n a S A j e s t j e g o w y s o -
k o [c i . W y k a |, |e s u m a k w a d r a t ó w p ó l [c i a n A B S i B C S j e s t r ó w n a s u m i e k w a d r a t ó w p ó l
[c i a n A D S i D C S .
Z A D A N I E 2 ( 4 P K T . )
R o z w i | r ó w n a n i e l o g ( 1 + ( x 2 - 2 x ) 2 ) + | 4 - | 5 - | 3 - x | | | = 0 .
Z A D A N I E 3 ( 3 P K T . )
W y k a |, |e j e |e l i s i n ± - c o s ± j e s t l i c z b w y m i e r n t o w y m i e r n a j e s t r ó w n i e | l i c z b a c o s 4 ±.
Z A D A N I E 4 ( 5 P K T . )
P r z e k t n e c z w o r o k t a A B C D s p r o s t o p a d Be .
a ) W y k a |, |e s u m y k w a d r a t ó w p r z e c i w l e g By c h b o k ó w t e g o c z w o r o k t a s r ó w n e .
b ) W y k a |, |e j e |e l i d Bu g o [c i j e g o b o k ó w A B , B C , C D , D A s k o l e j n y m i w y r a z a m i c i g u
g e o m e t r y c z n e g o t o c z w o r o k t t e n j e s t r o m b e m .
Z A D A N I E 5 ( 5 P K T . )
N a b o k a c h A B i A C t r ó j k t a A B C w y b r a n o p u n k t y E i D w t e n s p o s ó b , |e | A E | = 2 | E B | i
| A D | = | D C | . P u n k t M j e s t p u n k t e m w s p ó l n y m o d c i n k ó w C E i B D .
B
E
b
M
C A
D
c
- ’! - ’! - ’! ’! ’!
’!
a ) P r z e d s t a w k a |d y z w e k t o r ó w B C , B D o r a z C E w p o s t a c i p · b + q · c , g d z i e b =
- ’! ’!
’!
A B , c = A C o r a z p , q " R .
- ’! - ’! - ’!
b ) K o r z y s t a j c z r ó w n o [c i B C + C M = B M o b l i c z w j a k i m s t o s u n k u p u n k t M d z i e l i o d -
c i n k i B D i C E .
M a t e r i a B p o b r a n y z s e r w i s u
1
N A J W I K S Z Y I N T E R N E T O W Y Z B I Ó R Z A D A C Z M A T E M A T Y K I
Z A D A N I E 6 ( 5 P K T . )
W y z n a c z w s z y s t k i e w a r t o [c i p a r a m e t r ó w a , b , d l a k t ó r y c h n i e r ó w n o [
( x 2 - x - 2 ) ( x 2 - 2 a x + 3 b x - 6 a b ) 0
j e s t s p e Bn i o n a p r z e z k a |d l i c z b r z e c z y w i s t .
Z A D A N I E 7 ( 6 P K T . )
D a n y j e s t c z w o r o k t A B C D , g d z i e A = ( - 1 , 4 ) , B = ( - 3 , - 1 ) , C = ( 2 , - 2 ) , D = ( 1 , 2 ) .
a ) O b l i c z p o l e c z w o r o k t a A B C D .
2 2
s i n D B C s i n D B A
b ) O b l i c z w a r t o [ w y r a |e n i a + .
s i n B C D s i n B A D
Z A D A N I E 8 ( 6 P K T . )
N a r y s u n k u p r z e d s t a w i o n o w y k r e s p e w n e j f u n k c j i w y k Ba d n i c z e j f ( x ) = a x d l a x " R .
y
5
3
1
- 5 - 1 + 5 x
- 1
- 5
W y k r e s t e n p r z e k s z t a Bc o n o w s y m e t r i i [r o d k o w e j w z g l d e m p u n k t u ( 1 , - 1 ) , a n a s t p n i e
w s y m e t r i i o s i o w e j w z g l d e m p r o s t e j x = - 2 . O t r z y m a n o w t e n s p o s ó b w y k r e s f u n k c j i
g ( x ) = b · a x + c .
a ) W y z n a c z l i c z b y a , b , c i n a s z k i c u j w y k r e s f u n k c j i y = g ( x ) .
b ) O d c z y t a j z w y k r e s u r o z w i z a n i e n i e r ó w n o [c i g ( x ) - 5 .
Z A D A N I E 9 ( 5 P K T . )
O d l e g Bo [ [r o d k a w y s o k o [c i s t o |k a o d j e g o p o w i e r z c h n i b o c z n e j j e s t t r z y r a z y m n i e j s z a n i |
p r o m i e D j e g o p o d s t a w y . O b l i c z s i n u s k t a r o z w a r c i a s t o |k a .
M a t e r i a B p o b r a n y z s e r w i s u
2
N A J W I K S Z Y I N T E R N E T O W Y Z B I Ó R Z A D A C Z M A T E M A T Y K I
Z A D A N I E 1 0 ( 3 P K T . )
2 7 3 1 8 - 1
U z a s a d n i j , |e l i c z b a j e s t l i c z b c a Bk o w i t .
9 5 3 - 1
Z A D A N I E 1 1 ( 5 P K T . )
D o 1 2 p o n u m e r o w a n y c h s z u f l a d w k Ba d a m y l o s o w o 1 3 p o j e d y n c z y c h s k a r p e t e k , p r z y c z y m
d o k Ba d n i e d w i e z n i c h t w o r z p a r . J a k i e j e s t p r a w d o p o d o b i e Ds t w o o t r z y m a n i a k o n f i g u -
r a c j i , w k t ó r e j |a d n a s z u f l a d a n i e j e s t p u s t a o r a z s k a r p e t k i t w o r z c e p a r z n a j d u j s i w
r ó |n y c h s z u f l a d a c h .
M a t e r i a B p o b r a n y z s e r w i s u
3
Wyszukiwarka
Podobne podstrony:
17 04 10 R04 10 09 (17)105 04 (10)143 04 (10)17 04 2013 Anatomia 04 10 11 pra24 04 10 A04 10 09 (8)więcej podobnych podstron