60649

60649



Ocena dokładności - przykłady_ Eduard Preurda

Zastosowania prawa narastania błędów średnich dla wielkości skorelowanych

Przykład 2. Punkt P jest wyznaczany metodą współrzędnych biegunowy ch Na podstawie wyników' pomiani b = 200 m i p = 50*20' określić macierz kowariancji dla współrzędnych x i y wyznaczanego punktu, zakładając o, = ±2 cm, ob = ±40" oraz, że azymut a jest równy kątowi p Rozwiązanie:

Funkcje wyrażające współrzędne r, y za pomocą b i p są następujące

x = bcosp=>dx = (cosp)db-(bsinp)dp y = bsin p=>dy = (sin p)db + (bcospjdp

Współrzędne r i y są względem siebie zależne, zatem odpowiada im macierz kowariancji wyrażona zależnością

Cov(.v,v)=

COS p

sin p

V(b)

0 T cos p

sin p

-£sin fi

bcosp

0

F(/?){-2>sm/J

bcosp


czyli


Cov(x,y)=


cos2 pV(b)+ b2sin2 pV(p) sinpcospV(b)-b2sinpcospV(p) sinpcospV(b)-b2 sin pcospV(p)    sin2 pv(b)+ b2 cos2 pV(p)

skąd

Cov(x,y)=


0.50 X 0.0004 + 20125.66 x 3 x 10“* 0.50 x 0.0004 -19999.60 x 3 x 10 ’


0.50x0.0004-19999.60x3x10’ 1 [0.00026 0.00014 0.50 x 0.0004 + 19874.34 x 3x 10 ’J [o.00014 0.00026


Przykład 3.


Obliczyć odchylenie standardowe odległości pomiędzy punktami 1 -2, jeżeli znana jest macierz kowariancji Cov(X) dla współrzędnych tych punktów (wariancje podano w mm2).


X, = 0.000

10

i

-2 1

Y, = 0.000

Cov(X) = Cov(X,,Y,,X;Yj) =

1

12

3 2

X2 = 300.000

-2

3

15 -1

Y2 = 400.000

d = s/AX2+AY2 =,

/(X, - X, )2 +(Y, - Y, )2

i

2

-1 6

V(d) = FTCov(X) F


cid

d\\

ód

dYx

dci

dX2

dci

l

2>/rf2

1


(-2T, + 2k,)


(2*2-2*,)


(2*2 - 2k,)


(-2*2 + 24',)

-AX

-300

d

500

-0.6

-AY

-400

d

500

-0.8

AX

300

0.6

d

500

AY

400

d

500.


W tym miejscu warto spojrzeć na równania obserwacyjne dla długości!


10

1

_ 2

1

i

12

3

2

_2

3

15

-1

1

2

-1

6


7.2 -6.8 7.0 2.0]




Wyszukiwarka

Podobne podstrony:
Ocena dokładności - przykłady_ Edutrd Prrwtda Zastosowania prawa narastania błędów średnich dla
skanowanie0019 3 5. Ocena dokładności zastosowane parametry oceny, wnioski wynikające z oceny. 6. Pr
Ocena dokładności wyników wyrównania sieci kątowo-liniowej Wyrównanie przykładowej sieci kątowo
Przykładowe zastosowania prawa Pascala •    pompowanie dętki, materaca,
Przykład zastosowania prawa Hessa Wyznaczenie energii sieciowej kryształu E0 E0 - energia wydzielana
skanuj0270 (3) 284 PHP i MySQL dla każdego Przykładowo, jeżeli zostanie zastosowany typ TINYINT UNSI
skanuj0026 (25) Ryc. 120. Zespól bólowy barku. Przykład ułożenia czieraektrodowego z zastosowaniem j
skanuj0270 (3) 284 PHP i MySQL dla każdego Przykładowo, jeżeli zostanie zastosowany typ TINYINT UNSI
KIF617 (2) » Mtdąmipdom prawo łiunartanw 3 Obok przykładów deklaracji i konwencji dotyczących prawa
IMG35 (4) Ocena dokładności statycznej układu sprowadza się do oceny uchybu w stanie ustalonym eu.e
Jasiński Motywowanie w przedsiębiorstwie (42) Innym przykładem partycypacji było zastosowanie reorg
MechanikaP0 Zastosowanie prawa Pascala Np. prasa hydrauliczna KI *1 ■ l" "1 I I ,
10.    Ocena dokładności wskazań pozycji i kursu rzeczywistego kompasu GPS. 11.

więcej podobnych podstron