Tob. 9. |
1: Wybrane rozkłady dyskretne i ich charaktervstv1d Jl |
Bemoulliego |
p(jt = o)=i-p V»(t) = (1 — p) + pexp(£) E(X)=p Var(X) =p(l —p) parametr: 0 < p < 1 |
Dwumianowy B(n,p) |
P(X = x) - (")p*(l - p)-*, X = 0,1, 2,... ip(t) = [1 - p + p exp(*)]n E(X) —np Var(X) =» rap(l — p) parametry; n € N,0 < p < 1 ] |
Dwumianowy ujemny MB{r,p) |
p(x = x) = Ir|^pa:(1_J’)r’ *"°>1'2— = ( -^-r-r J , t < — Inp Vl-pexp(t)/ ’ i E(X) = rp/( 1 -p) Var(X) — 7'p/'(l — p)2 parametry: r > 0,0 < p < 1 |
Jednostajny dyskretny VU{xu..., xrn) |
P(X = x) = 1/771, X € {®1, #2>1 • »®m} MiMi 1 1 m Mmli 1 J,nl 1 ^ j=1 | al parametry:^* € M; j — 1,. • ■,ra;m |
______________ Tablice rozkładów 411 | ||
Geometryczny 0e(p) |
P(X = x) = (1 z = 0,1,2,.., J5(Jf)=p/(l-p) | |
MB(l,p) |
Var(X)=p/(l-p)2 parametr: 0 < p < 1 | |
Hipergeometryczny |
/"itA/JNT-J1A P(ar-«)-lvU-«;, | |
\nj x = max{0,n - (JV - M)},... |
., min{ M, nj | |
n(N, m, n) |
^(f) nie istnieje postać jawna | |
E(X)=nM/N M( M\N-n Var(X)-»-^l jvjjv_1 | ||
..... |
parametry: N € M; M = 0,1,2,..., JV; n |
= 1,2,..., AT |
Poissona |
P(X = 2r)-^e“\ x = 0,1,2,... xl | |
P(A) 1 |
V>(t) =exp[A(e‘ -1)] E{X)=X Var(AT)=A parametr: A > 0 | |
Wielomianowy |
x = (xi,...,a;fc), p = (pi,"« |
,Pfe) |
*s = 0>l,2,...;Etia:i = n | ||
Mk(n, p) |
^(t) = (^Pjexi)(t3)) , | =■(*!>•• |
-,4)T |
£?(Xi)==npi,i = l,2,...,fc | ||
1 |
Var(Xi) w »Pi(l— Pi) parametry: n €N;0 <p* < lj*= | |
411