454
Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models
2
5
2
3
0
1
x
y
Estimatc thc quadratic regression cquation pY\x = 3o + 0\X+ 02X2.
12.8 The Ibllowing is a set ofeoded cxpcrimcntal data on thc comprcssivc strength of a particular alloy at var-ious valucs of thc conccnlration of somc additivc:
Concentration, Compressive
X Strength, >■
10.0 |
25.2 |
27.3 |
28.7 |
15.0 |
29.8 |
31.1 |
27.8 |
20.0 |
31.2 |
32.6 |
29.7 |
25.0 |
31.7 |
30.1 |
32.3 |
30.0 |
29.4 |
30.8 |
32.8 |
(a) Estimatc thc quadratic regression cquation p.y\x = 00 + 0lX+ 02X2.
(b) Test for lack of fit of thc model.
12.9 The clcctric power consumcd cach month by a Chemical plant is thought to be related to thc avcragc ambient temperaturę xi, thc number of days in thc month X2.lhc avcragc product purity 13, and the tons of product produccd xą. The past ycar's historical data arc available and arc presented in thc following table.
V |
21 |
X2 |
®3 | |
240 |
25 |
24 |
91 |
100 |
236 |
31 |
21 |
90 |
95 |
290 |
45 |
24 |
88 |
110 |
274 |
60 |
25 |
87 |
88 |
301 |
65 |
25 |
91 |
94 |
316 |
72 |
26 |
94 |
99 |
300 |
80 |
25 |
87 |
97 |
296 |
84 |
25 |
86 |
96 |
267 |
75 |
24 |
88 |
110 |
276 |
60 |
25 |
91 |
105 |
288 |
50 |
25 |
90 |
100 |
261 |
38 |
23 |
89 |
98 |
(a) Fil a multiple linear regression model using thc abovc data set.
(b) Prediet power consumption for a month in which Xi = 75°F, X2 = 24 days, 13 = 90%, and x.i = 98 tons.
12.10 Givcn thc data
4 5 6
2 3 4
(a) Fit the cubic model py\x = &o + /?ix-P#2*2/?3X3.
(b) Prediet Y when x = 2.
scorcs of four tests. The data arc as follows:
_ y |
XI |
X2 |
24 | |
11.2 |
56.5 |
71.0 |
38.5 |
43.0 |
14.5 |
59.5 |
72.5 |
38.2 |
44.8 |
17.2 |
69.2 |
76.0 |
42.5 |
49.0 |
17.8 |
74.5 |
79.5 |
43.4 |
56.3 |
19.3 |
81.2 |
84.0 |
47.5 |
60.2 |
24.5 |
88.0 |
86.2 |
47.4 |
62.0 |
21.2 |
78.2 |
80.5 |
44.5 |
58.1 |
16.9 |
69.0 |
72.0 |
41.8 |
48.1 |
14.8 |
58.1 |
68.0 |
42.1 |
46.0 |
20.0 |
80.5 |
85.0 |
48.1 |
60.3 |
13.2 |
58.3 |
71.0 |
37.5 |
47.1 |
22.5 |
84.0 |
87.2 |
51.0 |
65.2 |
Estimatc thc regression cocfficicnts in thc model y = bo + biXi+ 62X2+ 63X3+ 64X4.
12.12 The following data rcflcct information taken from 17 U.S. Naval hospitals at various sites around thc world. The regressors arc workload variables, that is, items that result in thc need for pcrsonncl in a hos-pital installation. A brief dcscription of thc variablcs is as follows:
y = monthly labor-hours,
X\ = avcragc da i 1 y paticnl load.
X2 = monthly X-ray cxposurcs,
X3 = monthly occupicd bed-days,
x,j = cligiblc population in the arca/1000.
X5= avcragc lcnglh of paticnt's stay. in days.
Sitc |
*1 |
X2 |
x3 |
Xą |
®5 |
V |
1 |
15.57 |
2463 |
472.92 |
18.0 |
4.45 |
566.52 |
2 |
44.02 |
2048 |
1339.75 |
9.5 |
6.92 |
696.82 |
3 |
20.42 |
3940 |
620.25 |
12.8 |
4.28 |
1033.15 |
4 |
18.74 |
6505 |
568.33 |
36.7 |
3.90 |
1003.62 |
5 |
49.20 |
5723 |
1497.60 |
35.7 |
5.50 |
1611.37 |
6 |
44.92 |
11520 |
1365.83 |
24.0 |
4.60 |
1613.27 |
7 |
55.48 |
5779 |
1687.00 |
43.3 |
5.62 |
1854.17 |
8 |
59.28 |
5969 |
1639.92 |
46.7 |
5.15 |
2160.55 |
9 |
94.39 |
8461 |
2872.33 |
78.7 |
6.18 |
2305.58 |
10 |
128.02 |
20106 |
3655.08 |
180.5 |
6.15 |
3503.93 |
11 |
96.00 |
13313 |
2912.00 |
60.9 |
5.88 |
3571.59 |
12 |
131.42 |
10771 |
3921.00 |
103.7 |
4.88 |
3741.40 |
13 |
127.21 |
15543 |
3865.67 |
126.8 |
5.50 |
4026.52 |
14 |
252.90 |
36194 |
7684.10 |
157.7 |
7.00 |
10343.81 |
15 |
409.20 |
34703 |
12446.33 |
169.4 |
10.75 |
11732.17 |
16 |
463.70 |
39204 |
14098.40 |
331.4 |
7.05 |
15414.94 |
17 |
510.22 |
86533 |
15524.00 |
371.6 |
6.35 |
18854.45 |
12.11 The pcrsonncl deparlmenl of a certain indus- The goal herc is to producc an cmpirical cquation that trial firm uscd 12 subjccts in a study to dcterminc thc will estimatc (or prediet) pcrsonncl nccds for Naval relationship bctwccn job performance rating (y) and hospitals. Estimatc thc multiple linear regression cqua-