ÿþL a b o r a t o r i u m E l e k t r o t e c h n i k i i e l e k t r o n i k i L A B O R A T O R I U M © A M D 2 0 1 2
P r z y k Ba d o w e z a d a n i a z r o z w i z a n i a m i n a k o l o k w i u m z w i c z e D l a b o r a t o r y j n y c h
B a d a n i e z a s i l a c z y e l e k t r o n i c z n y c h
J a k w y z n a c z y c h a r a k t e r y s t y k P o = f ( R o ) m o c y d w ó j n i k a a k t y w n e g o o p a r a m e t r a c h E i R w z a l e |n o [c i o d o p o r u
o d b i o r n i k a R 0 ? N a r y s u j s c h e m a t u k Ba d u p o m i a r o w e g o d o z d j c i a t e j c h a r a k t e r y s t y k i , p o d a j w z ó r P o = f ( R o ) .
N a s z k i c u j t c h a r a k t e r y s t y k d l a p o d a n y c h w a r t o [c i e l e m e n t ó w . D a n e E = 4 8 V , R = 8 Wð.ð
E R
R 0
R o z w i z a n i e
D o k o n u j e m y p o m i a r ó w p r d u i n a p i c i a w u k Ba d z i e j a k n a p o n i |s z y m s c h e m a c i e . P o m i a r y r o z p o c z y n a m y o d
p r d u I A = 0 , a k o Dc z y m y ( w z a l e |n o [c i o d r o d z a j u zr ó d Ba n a p i c i a ) n a p r d z i e I A = m a k s y m a l n y d o p u s z c z a l n y
p r d o b c i |e n i a zr ó d Ba .
E R
+
A
R 0
I A
U V
+
V
S c h e m a t u k Ba d u p o m i a r o w e g o
Z m i e n i a m y o b c i |e n i e t a k , a b y n a p i c i e m a l a Bo n p . o 4 V . W y n i k i p o m i a r ó w z a p i s u j e m y w p o n i |s z e j t a b e l i
I A [ A ] 0 0 , 5 1 2 3 4 5 5 , 5 6
U V [ V ] 4 8 4 4 4 0 3 2 2 4 1 6 8 4 0
R e z y s t a n c j o b c i |e n i a i m o c o b l i c z a m y w e d Bu g w z o r ó w :
U V
R 0 =ð , P 0 =ð U V ×ð I A
I A
O b l i c z e n i a z a p i s u j e m y w p o n i |s z e j t a b e l i .
R o [ Wð] 8 8 4 0 1 6 8 4 1 , 6 0 . 7 2 7 3 0
¥ð
P o [ W ] 0 2 2 4 0 6 4 7 2 6 4 4 0 2 2 0
N a p o d s t a w i e p o w y |s z e j t a b e l i s p o r z d z a m y p u n k t o w y w y k r e s P o = f ( R o ) . N a s t p n i e n a n i e s i o n e n a w y k r e s i e
p u n k t y a p r o k s y m u j e m y k r z y w c i g B.
W z ó r t e o r e t y c z n y :
8 0
R 0
P o m a x = 7 2 W
P 0 ( R 0 ) =ð E 2
6 0
( R w +ð R 0 ) 2
P ( R o )
4 0
2 0
0
0 R o = 8 Wð 1 0 2 0 3 0
R o
S z k i c c h a r a k t e r y s t y k i m o c y z z a z n a c z o n y m m a k s i m u m
A M D
G e n e r a t o r f u n k c y j n y , o b w o d y z d i o d p o m i a r y i o b s e r w a c j e o s c y l o s k o p e m
W o b w o d z i e j a k n a r y s u n k u g e n e r a t o r f u n k c y j n y u s t a w i o n o w t r y b n a p i c i a s i n u s o i d a l n e g o o a m p l i t u d z i e
E m 0 = 2 4 V i c z s t o t l i w o [c i 1 0 0 H z , o p ó r o b c i |e n i a w y n o s i R 0 = 7 0 Wð.ð ðO b l i c z w s k a z a n i e a m p e r o m i e r z a
m i e r z c e g o w a r t o [ s k u t e c z n p r d u , n a s z k i c u j p r z e b i e g i n a o s c y l o s k o p i e d l a k a n a Bu I i I I . D o o b l i c z e D z a s t o s u j
p a r a m e t r y d i o d y i d e a l n e j .
K a n a B I o s c y l o s k o p u
K a n a B I I
R g
A
S K
e ( t ) G e n e r a t o r f u n k c y j n y R 0
R g = 5 0 Wð
M a s a
R o z w i z a n i e
K a n a B I k o l o r n i e b i e s k i
K a n a B I I k o l o r c z e r w o n y
2 2
I S K =ð I D C +ð I A C
I S K =ð 6 0 , 5 2 +ð 7 4 , 4 2 »ð 9 6 m A
S y m u l a c j a p o m i a r u w p r o g r a m i e M u l t i s i m ( p r o g r a m u w z g l d n i a n a p i c i e n a d i o d z i e ) .
R o z w i z a n i e p r z y z a Bo |e n i u i d e a l n e j d i o d y
S z k i c p r z e b i e g ó w n a o s c y l o s k o p i e
R o z w i z a n i e p r z y w y k o r z y s t a n i u p r o g r a m u M a t h c a d
U D =ð 0
E m 0 =ð 2 4 V
R 0 7 0
E m =ð E m 0 =ð 2 4 =ð1 4 V
R 0 +ð R g 5 0 +ð 7 0
U R m »ð E m =ð1 4 V
E m 0 2 4
I m =ð =ð =ð 2 0 0 m A
R 0 +ð R g 5 0 +ð 7 0
D l a s y g n a Bu s i n u s o i d a l n e g o w y p r o s t o w a n e g o
j e d n o p o Bó w k o w o :
I m
I S K =ð =ð1 0 0 m A
2
A M D
S y m u l a c j a k o m p u t e r o w a o b w o d ó w e l e k t r y c z n y c h
O b l i c z n a p i c i e U 3 . D a n e : E 1 = 2 8 V , J = 4 A , R 1 = 1 Wð,ð R 2 = 2 Wð, R 3 = 3 Wð,ð R 4 = 4 Wð.ð
R 1
J
E 1
U 3 R 3
R 2
R 4
R o z w i z a n i e
Z a p i s u j e m y r ó w n a n i a z g o d n i e z p o d a n y m n a w y k Ba d z i e a l g o r y t m e m .
w - i l o [ w z Bó w w o b w o d z i e , g - i l o [ g a Bz i w o b w o d z i e ,
1 . Z a z n a c z m y p r d y i n a p i c i a w o b w o d z i e o r a z n i e z a l e |n e o c z k a .
J
R 1
I 1
I 3
U 1
U J
E 1 R 3
U 3
R 2
R 4
U 4
U 2
2 . D l a w - 1 w z Bó w z a p i s u j e m y P P K .
I 1 -ð I 3 +ð J =ð 0 ( 1 )
3 . D l a g - w + 1 o c z e k n i e z a l e |n y c h z a p i s u j e m y N P K .
E 1 -ðU 1 -ðU 3 -ðU 4 =ð 0 ( 2 )
U J -ðU 3 -ðU 2 =ð 0 ( 3 )
4 . D l a r e z y s t a n c j i R k z a p i s u j e m y z a l e |n o [c i z g o d n i e z p r a w e m O h m a .
U 1 =ð R 1 ×ð I 1
U 2 =ð R 2 ×ð J
( 4 )
U 3 =ð R 3 ×ð I 3
U 4 =ð R 4 ×ð I 1
5 . O t r z y m a l i [m y u k Ba d 7 r ó w n a D z 7 n i e w i a d o m y m i . U k Ba d r ó w n a D r o z w i z u j e m y t a k , a b y o b l i c z y
p o s z u k i w a n e n a p i c i e U 3 .
P o w y |s z y u k Ba d r ó w n a D m o |e m y , n p . r o z w i z a t a k :
Z r ó w n a n i a ( 1 ) o b l i c z a m y I 1
I 1 =ð I 3 -ð J ( 5 )
D o r ó w n a n i a ( 2 ) p o d s t a w i a m y z a n a p i c i a z a l e |n o [c i n a r e z y s t a n c j a c h ( 4 ) j e d n o c z e [n i e p o d s t a w i a j c z a p r d I 1
z a l e |n o [ ( 5 ) . U z y s k u j e m y j e d n o r ó w n a n i e z n i e w i a d o m y m p r d e m I 3 .
E 1 -ð R 1 ( I 3 -ð J ) -ð R 3 I 3 -ð R 4 ( I 3 -ð J ) =ð 0
Z a t e m
M o |n a r ó w n i e | n a p i c i e U 3 o b l i c z y s t o s u j c
n p . m e t o d w z Bo w t a k :
E 1 +ð ( R 1 +ð R 4 ) J 2 8 +ð ( 1 +ð 4 ) 4
I 3 =ð =ð =ð 6 A
R 1 +ð R 3 +ð R 4 1 +ð 3 +ð 4 1
×ðE 1 +ð J 1
R 1 +ð R 4
U 3 :ð=ð =ð 1 8 V
O s t a t e c z n i e s z u k a n e n a p i c i e
1 1
+ð
U 3 =ð R 3 ×ð I 3 =ð 3 ×ð6 =ð1 8 V R 1 +ð R 4 R 3
A M D
P o m i a r y w o b w o d a c h p r d u s t a Be g o
O b l i c z p r d I 2 s t o s u j c z a s a d s u p e r p o z y c j i .
D a n e : E 1 = 1 8 V , E 2 = 1 2 V , R 1 = 3 Wð,ð R 3 = 4 Wð.ð
R 1 I 2
E 2
E 1 R 3
R o z w i z a n i e
Z a s a d a s u p e r p o z y c j i d l a p r d u I 2
( (
I 2 =ð I 2 E 1 ) +ð I 2 E 2 )
D z i a Ba zr ó d Bo E 1 , E 2 = 0 D z i a Ba zr ó d Bo E 2 , E 1 = 0
R 1
I 2 ( E 2 )
R 1
I 2 ( E 1 )
E 2
E 1 R 3
E 1 R 3
E 1 1 8 E 2 E 2 1 2 1 2
( (
I 2 E 1 ) =ð -ð =ð -ð =ð -ð6 A I 2 E 2 ) =ð +ð =ð +ð =ð 7 A
R 1 3 R 1 R 3 3 4
( (
Z a t e m p r d I 2 o b l i c z o n y z z a s a d y s u p e r p o z y c j i w y n o s i : I 2 =ð I 2 E 1 ) +ð I 2 E 2 ) =ð -ð6 +ð 7 =ð1 A
A M D
Wyszukiwarka
Podobne podstrony:
sieci lab 13 03 08Kolokwium 2 2012 13 (termin dod )IE RS lab 13 solutionsKolokwium 1 2012 13 (termin I, gr A)Kolokwium 2 2012 13 (termin I, gr A)Kolokwium 1 2012 13 (poprawa I)Kolokwium 1 2012 13 (termin I, gr B)IE RS lab 13 overviewkolokwium lab s1Układy Logiczne Lab 13Kolokwium 2 2012 13 (termin I, gr B)Kolokwium 2 2012 13 (poprawa)BwUE wyniki kolokwium 2012 13Lab 13Lab 13 2007 2008TSM wyniki kolokwium 2012 1313 International meteorological and magnetic co operations in polar regionsKolokwium 1 2012 13 (poprawa II, gr B)więcej podobnych podstron