5568303175

5568303175



1.2

Linearny property ol'Laplacc Transform, First Shitling property, Second Shifting property, Change of Scalę property of L.T.,

l Ąf J/i Jjjr"| (ul,lK>ul pfooO

Meaviside Unitstep function, Dircct Delta function, Pcriodic functions and their Laplacc Transform

II.

2. lmerse Laplacc 1 ransform

5

2.1

lnvcrsc Laplacc Iransform: L.incarity property', usc of theorems to iind invcrsc lepiące Transform, Partial fractions method and convolution theorem (without proof).

2.2

Applications to so!ve initial and boundary valuc problcms invoJvmg ord mary diffcrcntial cquations with one dependent vanaWc.

III.

Complcs sariables

10

3.1

Functions of complcx vanablc, Analytic function, ncccssary and sufficient conditions lor f Ą to be analytic (without proof), Cauchy-Ricmann cquations inpolar coordinates.

3.2

Milnc- Thomson method to determinc analytic function / ^ when it's rcal or imagmary or its combination is given. Harmonie function, orthogonal traiectoncs-

3J

Mapping; Conformal mapping, lincar, bilincar mapping. cross ratio, fixcd points and standard transformations such as Rotation and magnification, imersion and rctlection, translation.

IV.

4. Complri Integration

10

4.1

Linc intcgral of a function of a complcx variable, Cauchy’s theorem for analytic function, Cuuchv’s Goursat theorem (without proof), propcrtics of linc intcgral, Cauchy’s intcgral formula and deductioas.

4.2

Singuianttcs and poles:

4J

Taylor’s and Laurenfs senes dcvclopmcnł (without proof)

4.4

Residue at isolatcd singularity and its evaluation.

4.5

Residuc theorem, applicution to evaluatc rcal intcgral of typc

j/<os&sin0j/0, & j/<>-

o -te

V.

5. Fourier Stries

10

5.1

Orthogonal and orthonormal functions, Lxprcssions of a function in a senes of orthogonal functions. Dtnchlet*s conditions, Fourier senes of pcriodic



Wyszukiwarka

Podobne podstrony:
Foto (205) ■ f 4 «u* -    -3 J    «Pytanie 2 Ol Gnissea transform
snc00830 Zadanie I. Korzystając /. relacji pomiędzy transformatą Laplace’a i transformatą Z w postac
TRANSFORMATY LAPLACE A Transformaty Laplace a Lp /(*) F(s) 1 1 1 i 2 Ć" 1 s-a 3 COS cox s
Weronika DZIKOWSKA where: X, =^(s) means the Laplace transformed outputs (displacements), m, F(s) -
Weronika DZIKOWSKA determination of the two properties. Studies of the other two types of samples wi
skanowanie0088 (2) To ensure proper understanding of his intentions, the author brings the readers t
image049 (10) i Ouery Properties    ^ Ust of Ouety Condrtions dek to sefcrt va(uo.
a1 4Fest 4 Uzupełnianie luk 2 2 3 4 5 6 5 1 2 3 4 5 6 had taken proper care of your feet when you w
rrTax GRUPA SygnflyNotę: For proper work of components of PHICS system, the following programs have
12 Wstęp these levels is the proper object of study for some discipline of science or engineering. I
The first subparagraph shall also apply where completion of the agreed paediatric investigation plan
img30 A Transformation: 3C->disorder While 2H structure enables probabiłity of layer shifts
Definition First Offset:    

więcej podobnych podstron