ISNN 1896-77IX
MODELOWANIE INŻYNIERSKIE
32, s. 17-24. Gliwice 2006
Krzysztof Badyda Grzegorz Niewiński
Instytut Techniki Cieplnej, Politechnika Warszawska
Streszczenie. W artykule przedstawiono wyniki prac nad cyfrowym symulatorem turbozespołu parowego dużej mocy. Omówiono zasady modelowania i opisu matematycznego zjawisk zachodzących w wybranych elementach układu regeneracji. Zaprezentowane przykładowe wyniki symulacji zjawisk cieplno-przepływowych dla regeneracji niskoprężnej bloku 200MW
1. WSTĘP
Prowadzenie prac eksperymentalnych z wykorzystaniem rzeczywistych obiektów i instalacji energetycznych jest trudne, kosztowne, wiąże się z dużym ryzykiem powstania uszkodzeń badanych obiektów, a czasami wręcz niemożliwe. Z tego względu, mimo licznych realizowanych prac badawczych, własności instalacji energetycznych - szczególnie dynamika stanów nieustalonych - należą do najsłabiej rozpoznanych. Możliwość poprawy tej sytuacji powstanie dzięki upowszechnieniu w energetyce narzędzi do symulacji zjawisk cieplno-przepływowych. Prace nad programami symulującymi numerycznie ruch bloków energetycznych były i są prowadzone przez liczne ośrodki. Ponieważ jednak uzyskiwane wyniki mają duże znaczenie komercyjne, nie są one zwykle publikowane, a na rynku oferowane są jedynie gotowe programy komercyjne.
W obecnej dobie rozwoju technik obliczeniowych, w badaniach zjawisk cieplno-przepływowych powinno się odchodzić od stosowania modeli empirycznych i doświadczalnych [4][7], Jednocześnie, spośród metod modelowania, opartych na równaniach bilansowych (tj. zasadach zachowania masy, energii i pędu czynnika roboczego) podejściem, umożliwiającym osiągnięcie czasów obliczeniowych porównywalnych lub krótszych od czasów rzeczywistych, jest podejście dyskretne, zakładające stosowanie modeli o stałych skupionych (bezwymiarowych)
Podstawowym założeniem takiego podejścia jest podzielenie obiektu na elementy, w których zachodzą procesy decydujące o zachowaniu instalacji. Uśrednione parametry stanu dla danego elementu odnosi się do jego punktu środkowego. W turbozespole parowym elementami tymi są przestrzenie akumulacyjne typu komorowego (np. komory upustowe, rurociągi, przestrzenie w wymiennikach ciepła) i w nich zachodzi akumulacja masy i energii czynnika roboczego. Opis akumulacji masy i energii przy badaniu dynamiki procesów cieplno-przepływowych dokonywany jest za pomocą podstawowych równań bilansu masy i energii. Przy modelowaniu pozostałych elementów, tj. grup stopni, zaworów, dławnic, pomp jak i strat ciśnienia w rurociągach, stosuje się charakterystyki statyczne, oparte na zasadach