1


0x08 graphic
0x08 graphic
1. Compact Disc - płyta kompaktowa - srebrzysty krążek o średnicy 12 cm
(czasem 8 cm), i grubości 1.2 mm zrobił oszałamiającą karierę

Parametry odtwarzacza płyt kompaktowych są znakomite-.

2. Budowa CD:

Płyta kompaktowa składa się z 3 warstw. Pierwsza ochronna, licząc od "góry" czyli od warstwy z nadrukiem, ma grubość ok. 30 mikrometrów Poniżej jest warstwa odbijająca w której jest wytłoczona ścieżka dźwiękowa. Warstwa ta wykonana jest najczęściej z aluminium, srebra, czasem złota. Od strony lasera znajduje się warstwa o grubości ok. 1.2 mm z przezroczystego tworzywa która nadaje kształt i sztywność płycie. W warstwie odbijającej znajdują się wgłębienia (ang. pit) o szerokości 0,6 mikrometra i głębokości 0,12 mikrometra. Pity te mogą mieć różną długość. Odstęp między wgłębieniami - a także wgłębienie - wynosi nie mniej niZ 0,9 mikrometra. Największa wartość tych wielkości - 3,3 mikrometra. Ciąg wgłębień (pitów) stanowi spiralną ścieżkę od środka płyty do zewnątrz, cyfrowo zapisanej informacji.

3. Działanie odtwarzacza CD:

Światło (ciągłe) wyemitowane przez laser (t), poprzez układ luster (2,3) i skupione w soczewce (4) do średnicy ok 1 mikrometra padając na wgłębienia i pola nie zapisane ulega w różnym stopniu odbiciu i polaryzacji. Wracając z powrotem, przechodzi przez lustro półprzepuszczalne (2) i pada na fotodiody odbiorcze (6) gdzie powstaje sygnał modulowany. Logiczne "1" to krawędzie wgłębienia (początek i koniec każdego wgłębienia). Wzdłuż wgłębień i w polach czystych między wgłębieniami biegną logiczne "0". Ponieważ 1 bit zapisu na płycie zwanego kanałowym zajmuje na ścieżce 0,3 mikrometry, najkrótsze wgłębienie jest odczytywane jako 1001, a najdłuższe - 100000000001. Odczytany sygnał cyfrowy jest wzmacniany a następnie poddawany demodulacji korekcji błędów, rozdzielany na dwa kanały i dopiero wtedy zamieniany w przetworniku cyfrowo-analogowym na sygnał analogowy. Stąd, po wzmocnieniu podawany jest na gniazda wyjściowe. Wartość napięcia sygnału wyjściowego (analogowego) wynosi około 2 V (1.6-3V).

  1. Korygowanie w locie... Zapis w formacie CD, zawiera oprócz danych muzycznych także dane korekcyjne. Bity korekcyjne zajmują znaczną część zapisanej na płycie informacji. Jest to spowodowane tyra, że odczyt przebiega w czasie rzeczywistym, laser i układ przetwarzający nie mają możliwości powrotu i ponownego odczytu błędnie, czy żle zapisanej ścieżki Odtwarzanie nie może być przerwane Za prawidłowe odtwarzanie odpowiedzialny jest proces dekodowania CIRC o którym wspomniałem powyżej. W momencie gdy układ czytający na wskutek zabrudzenia czy zarysowania płyty nie może odczytać danych do pracy przystępuje korekcja błędów. Możliwe są trzy sytuacje.

  1. 3 sposoby na korygowanie w locie:

Błąd może być skorygowany - dzieje się tak w większości przypadków. Specjalny algorytm analizuje dane i uzupełnia brakujące. Nie słyszymy nieprawidłowości w odtwarzaniu.

  1. Jeżeli nie da się uzupełnić sygnału za pomocą danych korekcyjnych, sygnał jest interpolowany, czyli uzupełniany. Odtwarzacz tworzy wtedy nową próbkę, która łączy dwie sąsiednie, prawidłowo odczytane. Czasami słyszymy trzask w głośnikach.

  2. Jeżeli uszkodzenie ścieżki jest duże, układ korekcyjny nie może ani skorygować, ani interpolować danych. W głośnikach słychać wtedy chwile ciszy lub przeskakiwanie. Nawet dobrej jakości płyta nie jest wolna od błędów, lecz układ korekcyjny daje sobie z nimi doskonale radę i my nie słyszymy pogorszenia jakości

6. Do zapisu dźwięku na płytach kompaktowych używa się próbkowania z
częstotliwością 44.1 kHz i rozdzielczością 16 bitową. Pasmo
przenoszenia zostało ograniczone za pomocą filtru antyaliasingowego do
22.05 kHz. Początkowo sądzono, iż taki format zapisu będzie
wystarczający, lecz okazało się, że w miarę rozwoju technologii
przetwarzania dźwięku, wschodzą na jaw pewne niedoskonałości tego

?. Urządzenia cyfrowe pracują na dwójkowym systemie liczbowym.

Karta pomiarowa zawiera przetwornik analogowo-cyfrowy. Jego zadaniem jest zmiana eiągłych wartości wejściowych (sygnału odpowiadającego mierzonej wielkości fizycznej) na kody binarne Czynność powyższa (kwantyzacja sygnału analogowego) odbywa się w momentach czasu zdeterminowanych częstotliwością próbkowania

8. Kody binarne

Do oznaczania wartości sygnału poddawanego kwantowaniu wykorzystywane są całkowite liczby dwójkowe. Do dyspozycji mamy skończony zbiór takich liczb. Liczność zbioru zależna jest od „bitowościa" przetwornika (długości słowa).

9. BK (Bmory Digir) jak sama nazwa wskazuje jest to cyfra w układzie
dwójkowym

Mając do dyspozycji n pozycji w układzie dziesiętnym możemy utworzyć liczb

całkowitych:

Do oznaczania wartości sygnału poddawanego kwantowaniu wykorzystywane są

całkowite liczby dwójkowe. Do dyspozycji mamy skończony zbiór takich liczb.

l.iczność zbioru zależna jest od ..bitów ością przetwornika (długości słowa).

10. FFT

Szybka transformata Fouriera (ang. FFT od fast Fourier transform) to algorytm liczenia dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej. Najpopularniejszą wersją FFT jest FFT o podstawie 2. Jest to bardzo efektywna operacja, jednak wektor próbek wejściowych (spróbkowany sygnał) musi mieć długość N = 2k, gdzie k to pewna liczba naturalna. Wynik otrzymuje się na drodze schematycznych przekształceń, opartych o tak zwane struktury motylkowe. Złożoność obliczeniowa Szybkiej transformaty Fouriera wynosi O(nlogn), zamiast 0(n2) naiwnego algorytmu. Dzięki istnieniu takiego algorytmu praktyczne możliwe stało się cyfrowe przetwarzanie sygnałów (DSP), a także zastosowanie dyskretnych transformat cosinusowych (DCT) (JPEG. MP3 itd.) do kompresji.

  1. Próbkowanie (dyskretyzacja, kwantowanie w czasie) to (poprzedzający kwantyzację) etap procesu przetwarzania sygnału analogowego na cyfrowy, polegający na przetworzeniu sygnału ciągłego w sygnał impulsowy istniejący tylko w określonych chwilach czasowych.

  2. Sposób przekształcenia - polega ono na tym, że w ustalonych odstępach czasu (impulsowanie) pobierane są tzw. próbki (ang. sample) i mierzona jest wartość chwilowa sygnału. Sygnał przekształcony do postaci spróbkowanej nazywa się sygnałem dyskretnym.

  3. Okres i częstotliwość próbkowania

Okres próbkowania T to odstęp czasu pomiędzy pobieraniem kolejnych próbek.

Częstotliwość to odwrotność okresu:

f-lT

Aby spróbkowany sygnał z postaci cyfrowej dało się przekształcić z powrotem do

postaci analogowej musi być spełnione twierdzenie Kotielnikowa-Shannona o

próbkowaniu. Mówi ono, że częstotliwość próbkowania nie może być mniejsza niż

podwojona wartość największej częstotliwości występującej w sygnale.

Przykład praktycznego wykorzystania

Ludzkie ucho słyszy dźwięki do częstotliwości około 20 kHz. Zgodnie z

twierdzeniem Kotielnikowa-Shannona, częstotliwość zapisu cyfrowego musi być

zatem większa niż 40 kHz aby nie dało się usłyszeć przekłamań. Stad 44100 próbek

na sekundę (44,1 kHz), dla każdego kanału, na płycie CD-Audio jest wartością w

zupełności wystarczającą

Aby uzyskać postać cyfrową sygnału, po spróbkowaniujest on poddawany

kwantyzacji.

14. Kwantyzacja to (drugi po próbkowaniu) etap procesu przetwarzania
sygnału analogowego na cyfrowy.

Sygnał analogowy (np. napięcie, prąd) może przyjmować dowolne wartości systemy cyfrowe natomiast są w stanie przetwarzać tylko sygnały reprezentowane słowami o skończonej liczbie bitów. Taka reprezentacja wymaga ograniczenia zbioru wartości sygnału. Wartości te nazywane są poziomami reprezentacji, natomiast sama kwantyzacja to proces polegająoy na przypisaniu wartości analogowych do najbliższych poziomów reprezentacji, co wiąże się z nieuniknioną i nieodwracalną utratą informacji.

Każdemu poziomowi reprezentacji przypisywana jest w procesie kodowania określona liczba dwójkowa



Wyszukiwarka

Podobne podstrony:
1
1
X~1
SEM18 ~1
1
1
1
1
1
1
14 gal~1
1
1
11-nkb~1, wisisz, wydzial informatyki, studia zaoczne inzynierskie, podstawy programowania, l2
2-eukl~1, wisisz, wydzial informatyki, studia zaoczne inzynierskie, podstawy programowania, l2
1-algo~1, wisisz, wydzial informatyki, studia zaoczne inzynierskie, podstawy programowania, l2
1

więcej podobnych podstron