Rozwiązanie testu, NR


NR

PYTANIE

TAK/NIE

1.

Każdy acykliczny podzbiór zbioru krawędzi grafu spójnego można uzupełnić do drzewa rozpinającego.

TAK

2.

Istnieje liczba naturalna n taka że K(G)>n implikuje, że G ma cykl Hamiltona.

NIE

3.

Jeśli χ(G)≤4 to G jest planarny

NIE

4.

Każdy graf planarny można narysować na torusie (bez przecinania krawędzi)

TAK

5.

Jeśli G jest grafem Eulera to L(G) jest grafem Hamiltona.

TAK

6.

G lub dopG jest grafem spójnym.

TAK

7.

Jeśli G ma 1-faktor to dla każdego zbioru krawędzi S liczba nieparzystych składowych grafu G-S nie przekracza liczności zbioru S

NIE?

8.

Nie istnieje 6-spójny graf planarny

TAK

9.

Każde dwie najdłuższe drogi proste w G mają wspólny wierzchołek.

TAK

10.

Graf Petersena jest planarny.

NIE

11.

Każdy graf Hamiltona jest dwuspójny.

TAK

12.

Dla każdego drzewa T nie mającego wierzchołków stopnia 2, graf G otrzymany z T przez połączenie krawędzią każdych dwóch liści jest grafem Hamiltona.

NIE/TAK*

13.

Dla każdego grafu Hamiltona G, χ'(G)=Δ(G)

NIE

14.

W każdym grafie dwudzielnym o klasach X i Y, α0(G)=min(|X|,|Y|)

NIE

15.

W każdym grafie o co najmniej 3 wierzchołkach istnieją dwa wierzchołki o tym samym stopniu.

TAK

Ad.6. Załóżmy, że G jest niespójny. Jego wierzchołki możemy podzielić więc na dwie klasy G1 i G2 rozdzielne, czyli takie, że żaden wierzchołek należący do G1 nie sąsiaduje z żadnym wierzchołkiem należącym do G2. Jeżeli teraz weźmiemy dopG to wszystkie wierzchołki z klasy G1 sąsiadują ze wszystkimi wierzchołkami z klasy G2. Teraz a) dla dowolnych u∈G1 i v∈G2 istnieje u-v droga, bo wzięliśmy dopG, a poprzednio w G nie mieli wspólnej krawędzi oraz b) dla dowolnych u,v∈tej samej składowej grafu G istnieje droga u-z-v, gdzie z∈drugiej składowej. Stąd mamy, że pomiędzy wszystkimi wierzchołkami w dopG istnieje droga ⇒ dopG jest spójny. Analogicznie w drugą stronę.

Ad.8.W każdym grafie planarnym ∃ wierzchołek stopnia ≤5. Usuwamy wierzchołki sąsiadujące z tym wierzchołkiem i w ten sposób rozspójniamy graf (usunęliśmy mniej niż 6 wierzchołków więc powinien być nadal spójny). Zatem nie istnieje 6-spóny graf planarny.

Ad.9.Rys.1.Załóżmy że w G mamy dwie najdłuższe drogi P1,P2 które nie mają wspólnego wierzchołka. Niech u∈V(P1), v∈V(P2) u≠v. Jednak graf G jest spójny więc dist(u,v)≥ 1. Powstaje nam trzecia dłuższa od P1,P2 droga P3 zawierająca po dokładnie jednej części dróg P1,P2 oraz drogę u-v. Jest to sprzeczne, bo P1, P2 miały być najdłuższymi drogami.

Ad.10. Graf Petersena nie jest planarny, bo jest ściągalny do grafu K5, który nie jest planarny. Zatem na mocy tw. Kuratowskiego: Dany graf jest planarny nie zawiera podgrafu homeomorficznego z grafem K5 lub z grafem K3,3)RYS.

Ad.13.Kontrprzykład rys.3 Δ(a)=2 χ'(G)=3

Ad.15 W zadaniu tym będę korzystać z zasady szufladkowej. Mamy n wierzchołków, gdzie n≥3. Weźmy szufladki oznaczone liczbami od 0 do n-1 i niech numer szufladki odpowiada stopniowi danego wierzchołka. Aby wykazać, że istnieją w grafie dwa wierzchołki o tym samym stopniu, wykażemy, że jedna z szufladek zawiera więcej niż jeden element. Mamy zatem n wierzchołków i n szufladek, teoretycznie każda z szufladek może być zajęta. Gdyby tak było, to wierzchołek o stopniu 0 nie łączyłby się z żadnym innym wierzchołkiem, a wierzchołek o stopniu n-1 łączyłby się z każdym z wierzchołkiem, również z tym, który ma stopień 0, co jest oczywiście niemożliwe.



Wyszukiwarka

Podobne podstrony:
OAK Rozwiązanie testu nr 2 z ubera
OAK Rozwiązanie testu nr 1 z ubera
Rozwiazanie Testu SP, ^ Turystyka i Rekreacja GWSH Katowice, 3 semestr, podstawy przedsiebiorcz
Rozwiązanie testu, ♥ Psychologia i socjologia organizacji ♥
Rozwiązanie zadania nr 05, egzamin na rzeczoznawcę majątkowego, pyt ministerstwo
Rozwiązanie zadania nr 27 chyba, egzamin na rzeczoznawcę majątkowego, 2008
Zagadnienia do testu nr 2, 1
rozwiazany test nr 1[1][1]
POPRAWA TESTU nr 4
rozwiązanie projekt nr
Chemia Ćwiczenia zestawy rozwiązane, Zestaw nr 7 rozwiazany, Zestaw 7
Rozwiazanie testu z psychologii, Rozwiązanie testu z psychologii
Rozwiazanie Testu SP, ^ Turystyka i Rekreacja GWSH Katowice, 3 semestr, podstawy przedsiebiorcz
Rozwiązanie testu sprawdzianu pósemestralnego
rozwiazania testu mini Leszek 2
Arkusze z języka angielskiego na poziomie podstawowym oraz propozycja rozwiązania testu
Odpowiedzi do testu nr 1 typ B
rozwiązanie nr 1

więcej podobnych podstron