3U]\NáDG:\FLJDQLHGHVNLREFL*RQHMNORFNLHP
.ORFHN R FL *DU]H
G
OH*\ QD QLHZD*NLHM GHVFH 'R NORFND SU]\PRFRZDQ\ MHVW SU W 'UXJL
NRQLHF SU WD SRáF]RQ\ MHVW ] SRGSRU QLHSU]HVXZQ 3RPL G]\ GHVN D NORFNLHP L GHVN D
SRGáR*HP PR*H Z\VWSLü WDUFLH :VSyáF]\QQLN WDUFLD QD RE\GZX SRZLHU]FKQLDFK VW\NX
wynosi
µ
ó :\]QDF] PLQLPDOQ VLá 3 SU]\áR*RQ GR GHVNL NWyUD SR]ZROL QD MHM
Z\FLJQL FLHVSRGNORFND
α
=45
0
3
=?
µ
=1/4
*
5R]ZL]DQLH
3U]HGVWDZLP\VLá\G]LDáDMFHQDNORFHNLGHVN
α
=45
0
3
=?
*
7
7
7
7
1
1
1
1
6
x
y
2
=DSLV]P\UyZQDQLDSU]HGVWDZLDMFHU]XW\QDRVLH[L\VLáG]LDáDMF\FKQDNORFHN
∑
=
⇒
=
S
T
F
x
2
1
0
1
,
∑
−
=
⇒
=
S
G
N
F
y
2
1
0
1
,
VWG
1
1
T
G
N
−
=
.
( 1)
:FKZLOLSRF]WNXUXFKXWDUFLHMHVWZSHáQLUR]ZLQL WHVWDG
1
1
N
T
µ
=
.
( 2)
=UyZQDLRWU]\PXMHP\
)
(
1
1
T
G
T
−
=
µ
,
ZL F
G
T
1
1
+
=
µ
µ
.
( 3)
3U]HMG(P\GRUyZQDUyZQRZDJLGHVNL
5]XWXMFVLá\QDR\RWU]\PDP\
∑
=
⇒
=
2
1
0
N
N
F
y
3RQLHZD*GODWDUFLDZSHáQLUR]ZLQL WHJR
1
1
N
T
µ
=
i
2
2
N
T
µ
=
ZL F
2
1
T
T
=
.
( 4)
=DSLV]P\RVWDWHF]QLHU]XWVLáQDR[
P
T
T
F
x
=
+
⇒
=
∑
2
1
0
.
( 5)
=UyZQDLRWU]\PDP\
G
P
1
2
+
=
µ
µ
3RZVWDZLHQLXZDUWRFL
µ
=¼. mamy
ostatecznie
G
P
5
2
=
v