3U]\NáDG:\FLJDQLHGHVNLREFL*RQHMNORFNLHP
.ORFHN R FL *DU]H G OH*\ QD QLHZD*NLHM GHVFH 'R NORFND SU]\PRFRZDQ\ MHVW SU W 'UXJL
NRQLHF SU WD SRáF]RQ\ MHVW ] SRGSRU QLHSU]HVXZQ 3RPL G]\ GHVN D NORFNLHP L GHVN D
SRGáR*HP PR*H Z\VWSLü WDUFLH :VSyáF]\QQLN WDUFLD QD RE\GZX SRZLHU]FKQLDFK VW\NX
wynosi µ ó :\]QDF] PLQLPDOQ VLá 3 SU]\áR*RQ GR GHVNL NWyUD SR]ZROL QD MHM
Z\FLJQL FLHVSRGNORFND
α=450
*
3=?
µ=1/4
5R]ZL]DQLH
3U]HGVWDZLP\VLá\G]LDáDMFHQDNORFHNLGHVN
6
α=450
y
x
*
1
7
7
1
3=?
7
1
7
1
=DSLV]P\UyZQDQLDSU]HGVWDZLDMFHU]XW\QDRVLH[L\VLáG]LDáDMF\FKQDNORFHN
∑
1
1
F
0
, ∑ F
0
,
y =
⇒ N 1 = G −
S
x =
⇒ T 1 =
S
2
2
VWG N = G − T .
( 1)
1
1
:FKZLOLSRF]WNXUXFKXWDUFLHMHVWZSHáQLUR]ZLQL WHVWDG T =
N
µ . ( 2)
1
1
=UyZQDLRWU]\PXMHP\ T = µ( G − T ) , 1
1
µ
ZL F T =
G .
( 3)
1
µ +1
3U]HMG(P\GRUyZQDUyZQRZDJLGHVNL
5]XWXMFVLá\QDR\RWU]\PDP\ ∑ Fy = 0 ⇒ N
N
1 =
2
3RQLHZD*GODWDUFLDZSHáQLUR]ZLQL WHJR T =
N
µ i T = N
µ ZL F T = T .
( 4)
1
1
2
2
1
2
=DSLV]P\RVWDWHF]QLHU]XWVLáQDR[
F
∑ = 0 ⇒ T
.
( 5)
1 + T 2 = P
x
2µ
=UyZQDLRWU]\PDP\ P =
G
µ +
3RZVWDZLHQLXZDUWRFLµ=¼. mamy 1
2
ostatecznie P =
G v
5
2