odsysanie Płyta: 𝑋:
𝜕𝑉
𝜕𝑡
+ 𝑉𝑥
𝜕𝑉
𝜕𝑥
+ 𝑉𝑦
𝜕𝑉
𝜕𝑦
+ 𝑉𝑧
𝜕𝑉
𝜕𝑧
= 𝑋 −
1
𝜌
∗
𝜕𝑝
𝜕𝑥
+ 𝜈Δ𝑉𝑥 +
𝜈
3
∗
𝜕
𝜕𝑥
(𝑑𝑖𝑣𝑉⃗ ) |𝑌:
𝜕𝑉
𝜕𝑡
+ 𝑉𝑥
𝜕𝑉
𝜕𝑥
+
𝑉𝑦
𝜕𝑉
𝜕𝑦
+ 𝑉𝑧
𝜕𝑉
𝜕𝑧
= 𝑌 −
1
𝜌
∗
𝜕𝑝
𝜕𝑦
+ 𝜈Δ𝑉𝑦 +
𝜈
3
∗
𝜕
𝜕𝑦
(𝑑𝑖𝑣𝑉⃗ )| 𝑉𝑥 = 𝑢 = 𝑢(𝑦); 𝑉𝑢 = 𝑉(𝑦); 𝑝 = 𝑝(𝑦)| wektor𝑉⃗ =
𝑖 𝑢 + 𝑗 𝑣 + 𝑘⃗ 𝑤 | z r. ciągłości,
𝜕𝑉𝑥
𝜕𝑥
+
𝜕𝑉𝑦
𝜕𝑦
= 0 → 𝑉(𝑦) = 𝑉𝑜 = 𝑐𝑜𝑛𝑠𝑡 | 𝑉𝑜
𝑑𝑢
𝑑𝑦
= 𝑣
𝑑2𝑢
𝑑2𝑦
; 𝑉𝑜
𝑑𝑢
𝑑𝑦
= 𝑣∆𝑢 =
𝑣 (
𝜕2𝑢
𝜕𝑥2
+
𝜕2𝑢
𝜕𝑦2
+
𝜕2𝑢
𝜕𝑧2
) = 𝑣
𝜕2𝑢
𝜕𝑦2
| 𝑉𝑜
𝑑𝑢
𝑑𝑦
= 𝑣
𝑑2𝑢
𝑑2𝑦
\: 𝑣|
𝑑
𝑑𝑦
(
𝑑𝑢
𝑑𝑦
) =
𝑉𝑜
𝑣
𝑑𝑢
𝑑𝑦
\∶
𝑑𝑢
𝑑𝑦
|
𝑑
𝑑𝑦
𝑑𝑢
𝑑𝑦
𝑑𝑢
𝑑𝑦
=
𝑉𝑜
𝑣
\∗ 𝑑𝑦|
𝑑(
𝑑𝑢
𝑑𝑦
)
𝑑𝑢
𝑑𝑦
=
𝑉𝑜
𝑣
𝑑𝑦 ←
𝑑𝑢
𝑑𝑦
=
𝑄|
𝑑𝑄
𝑄
=
𝑉𝑜
𝑣
𝑑𝑦\ ∫ | 𝑙𝑛𝑄 =
𝑉𝑜
𝑣
𝑦 + 𝐶
1
| 𝑄 = 𝑒
𝑉𝑜
𝑣
𝑦+𝐶
; 𝑦 = 𝑒
𝑐
; 𝑒
𝑉𝑜
𝑣
𝑦
= 𝐶
1
𝑒
𝑉𝑜
𝑣
𝑦
|
𝑑𝑢
𝑑𝑦
= 𝐶
1
𝑒
𝑉𝑜
𝑣
𝑦
→ 𝑑𝑢 = 𝐶
1
𝑒
𝑉𝑜
𝑣
𝑦
𝑑𝑦\
∫ |𝑢 = 𝐶
1
𝑣
𝑉𝑜
∗ 𝑒
𝑉𝑜
𝑣
+ 𝐶
2
| war. brzeg. 𝑢(𝑦 = 0) = 0|𝑢(𝑦 → ∞) = 𝑢|𝑢(0) = 𝐶
1
𝑣
𝑉𝑜
+ 𝐶
2
= 0 |𝑢(𝑦) =
𝐶
1
𝑣
−|𝑉𝑜|
𝑒
−|𝑉𝑜|
𝑣
𝑦
+ 𝐶
2
| 𝑢(∞) = 𝑢 = 𝐶
2
|
układ równań: 1) 𝑢(0): 𝐶
1
𝑣
−|𝑉𝑜|
+ 𝐶
2
= 0 ; 2) 𝑢(∞): 𝑢 = 𝐶
2
| 𝐶
1
= 𝐶
2
|𝑉𝑜|
𝑣
= 𝑢
|𝑉𝑜|
𝑣
| 𝑢(𝑦) = −𝑢
|𝑉𝑜|
𝑣
𝑣
|𝑉𝑜|
𝑒
−|𝑉𝑜|
𝑣
𝑦
+
𝑢 = 𝑢 (1 − 𝑒
−|𝑉𝑜|
𝑣
𝑦
) 𝑛𝑎𝑝𝑟. 𝑠𝑡𝑦𝑐𝑧𝑛𝑒: 𝜏 = 𝑢
𝜕𝑢
𝜕𝑦
= 𝜌𝑢
𝜕𝑢
𝜕𝑦
= −𝜌𝑣
|𝑉𝑜|
𝑣
𝑒
−|𝑉𝑜|
𝑣
= −𝜌𝑢|𝑉𝑜|
odsysanie Płyta: 𝑋:
𝜕𝑉
𝜕𝑡
+ 𝑉𝑥
𝜕𝑉
𝜕𝑥
+ 𝑉𝑦
𝜕𝑉
𝜕𝑦
+ 𝑉𝑧
𝜕𝑉
𝜕𝑧
= 𝑋 −
1
𝜌
∗
𝜕𝑝
𝜕𝑥
+ 𝜈Δ𝑉𝑥 +
𝜈
3
∗
𝜕
𝜕𝑥
(𝑑𝑖𝑣𝑉⃗ ) |𝑌:
𝜕𝑉
𝜕𝑡
+ 𝑉𝑥
𝜕𝑉
𝜕𝑥
+ 𝑉𝑦
𝜕𝑉
𝜕𝑦
+ 𝑉𝑧
𝜕𝑉
𝜕𝑧
= 𝑌 −
1
𝜌
∗
𝜕𝑝
𝜕𝑦
+ 𝜈Δ𝑉𝑦 +
𝜈
3
∗
𝜕
𝜕𝑦
(𝑑𝑖𝑣𝑉⃗ )| 𝑉𝑥 = 𝑢 = 𝑢(𝑦); 𝑉𝑢 = 𝑉(𝑦); 𝑝 = 𝑝(𝑦)| wektor𝑉⃗ = 𝑖 𝑢 +
𝑗 𝑣 + 𝑘⃗ 𝑤 | z r. ciągłości,
𝜕𝑉𝑥
𝜕𝑥
+
𝜕𝑉𝑦
𝜕𝑦
= 0 → 𝑉(𝑦) = 𝑉𝑜 = 𝑐𝑜𝑛𝑠𝑡 | 𝑉𝑜
𝑑𝑢
𝑑𝑦
=
𝑣
𝑑2𝑢
𝑑2𝑦
; 𝑉𝑜
𝑑𝑢
𝑑𝑦
= 𝑣∆𝑢 = 𝑣 (
𝜕2𝑢
𝜕𝑥2
+
𝜕2𝑢
𝜕𝑦2
+
𝜕2𝑢
𝜕𝑧2
) = 𝑣
𝜕2𝑢
𝜕𝑦2
| 𝑉𝑜
𝑑𝑢
𝑑𝑦
=
𝑣
𝑑2𝑢
𝑑2𝑦
\: 𝑣|
𝑑
𝑑𝑦
(
𝑑𝑢
𝑑𝑦
) =
𝑉𝑜
𝑣
𝑑𝑢
𝑑𝑦
\∶
𝑑𝑢
𝑑𝑦
|
𝑑
𝑑𝑦
𝑑𝑢
𝑑𝑦
𝑑𝑢
𝑑𝑦
=
𝑉𝑜
𝑣
\∗ 𝑑𝑦|
𝑑(
𝑑𝑢
𝑑𝑦)
𝑑𝑢
𝑑𝑦
=
𝑉𝑜
𝑣
𝑑𝑦 ←
𝑑𝑢
𝑑𝑦
=
𝑄|
𝑑𝑄
𝑄
=
𝑉𝑜
𝑣
𝑑𝑦\ ∫ | 𝑙𝑛𝑄 =
𝑉𝑜
𝑣
𝑦 + 𝐶
1
| 𝑄 = 𝑒
𝑉𝑜
𝑣 𝑦+𝐶
; 𝑦 = 𝑒
𝑐
; 𝑒
𝑉𝑜
𝑣 𝑦
=
𝐶
1
𝑒
𝑉𝑜
𝑣 𝑦
|
𝑑𝑢
𝑑𝑦
= 𝐶
1
𝑒
𝑉𝑜
𝑣 𝑦
→ 𝑑𝑢 = 𝐶
1
𝑒
𝑉𝑜
𝑣 𝑦
𝑑𝑦\ ∫ |𝑢 = 𝐶
1
𝑣
𝑉𝑜
∗ 𝑒
𝑉𝑜
𝑣
+ 𝐶
2
| war.
brzeg. 𝑢(𝑦 = 0) = 0|𝑢(𝑦 → ∞) = 𝑢|𝑢(0) = 𝐶
1
𝑣
𝑉𝑜
+ 𝐶
2
=
0 |𝑢(𝑦) = 𝐶
1
𝑣
−|𝑉𝑜|
𝑒
−|𝑉𝑜|
𝑣 𝑦
+ 𝐶
2
| 𝑢(∞) = 𝑢 = 𝐶
2
|
układ równań: 1) 𝑢(0): 𝐶
1
𝑣
−|𝑉𝑜|
+ 𝐶
2
= 0 ; 2) 𝑢(∞): 𝑢 = 𝐶
2
| 𝐶
1
=
𝐶
2
|𝑉𝑜|
𝑣
= 𝑢
|𝑉𝑜|
𝑣
| 𝑢(𝑦) = −𝑢
|𝑉𝑜|
𝑣
𝑣
|𝑉𝑜|
𝑒
−|𝑉𝑜|
𝑣 𝑦
+ 𝑢 =
𝑢 (1 − 𝑒
−|𝑉𝑜|
𝑣 𝑦
) 𝑛𝑎𝑝𝑟. 𝑠𝑡𝑦𝑐𝑧𝑛𝑒: 𝜏 = 𝑢
𝜕𝑢
𝜕𝑦
= 𝜌𝑢
𝜕𝑢
𝜕𝑦
= −𝜌𝑣
|𝑉𝑜|
𝑣
𝑒
−|𝑉𝑜|
𝑣
=
−𝜌𝑢|𝑉𝑜|