odsysanie Płyta: $X:\ \frac{\partial V}{\partial t} + Vx\frac{\partial V}{\partial x} + Vy\frac{\partial V}{\partial y} + Vz\frac{\partial V}{\partial z} = X - \frac{1}{\rho}*\frac{\partial p}{\partial x} + \nu\Delta Vx + \frac{\nu}{3}*\frac{\partial}{\partial x}(div\overrightarrow{V})$ $|Y:\ \frac{\partial V}{\partial t} + Vx\frac{\partial V}{\partial x} + Vy\frac{\partial V}{\partial y} + Vz\frac{\partial V}{\partial z} = Y - \frac{1}{\rho}*\frac{\partial p}{\partial y} + \nu\Delta Vy + \frac{\nu}{3}*\frac{\partial}{\partial y}(div\overrightarrow{V})$| Vx = u = u(y); Vu = V(y); p = p(y)| wektor$\overrightarrow{V} = \overrightarrow{i}u + \overrightarrow{j}v + \overrightarrow{k}w\ |\text{\ \ }|\ tor$z r. ciągłości$,\ \ \frac{\partial Vx}{\partial x} + \frac{\partial Vy}{\partial y} = 0 \rightarrow V\left( y \right) = Vo = const\left| \text{\ \ Vo}\frac{\text{du}}{\text{dy}} = v\frac{d^{2}u}{d^{2}y};Vo\frac{\text{du}}{\text{dy}} = vu = v\left( \frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}} \right) = v\frac{\partial^{2}u}{\partial y^{2}}\ \right|\ \text{Vo}\frac{\text{du}}{\text{dy}} = v\frac{d^{2}u}{d^{2}y}\backslash:v|\frac{d}{\text{dy}}\left( \frac{\text{du}}{\text{dy}} \right) = \frac{\text{Vo}}{v}\frac{\text{du}}{\text{dy}}\backslash\ :\frac{\text{du}}{\text{dy}}|\frac{\frac{d}{\text{dy}}\frac{\text{du}}{\text{dy}}}{\frac{\text{du}}{\text{dy}}} = \frac{\text{Vo}}{v}\backslash*dy|o\text{\ \ }$ $\frac{d(\frac{\text{du}}{\text{dy}})}{\frac{\text{du}}{\text{dy}}} = \frac{\text{Vo}}{v}dy \leftarrow \frac{\text{du}}{dy} = Q$| $\frac{\text{dQ}}{Q} = \frac{\text{Vo}}{v}dy\backslash\int_{}^{}|$ $lnQ = \frac{\text{Vo}}{v}y + C_{1}\left| \ Q = e^{\frac{\text{Vo}}{v}y + C};y = e^{c};e^{\frac{\text{Vo}}{v}y} = C_{1}e^{\frac{\text{Vo}}{v}y} \right|\frac{\text{du}}{\text{dy}} = C_{1}e^{\frac{\text{Vo}}{v}y} \rightarrow du = C_{1}e^{\frac{\text{Vo}}{v}y}dy\backslash\int_{}^{}{|u = C_{1}\frac{v}{\text{Vo}}*e^{\frac{\text{Vo}}{v}} + C_{2}}$ | war. brzeg. $u\left( y = 0 \right) = 0\left| u\left( y \rightarrow \infty \right) = u \right|u\left( 0 \right) = C_{1}\frac{v}{\text{Vo}} + C_{2} = 0\left| u\left( y \right) = C_{1}\frac{v}{- \left| \text{Vo} \right|}e^{\frac{- \left| \text{Vo} \right|}{v}y} + C_{2} \right|u\left( \infty \right) = u = C_{2}\ |$
układ równań: 1) $u\left( 0 \right):\ C_{1}\frac{v}{- \left| \text{Vo} \right|} + C_{2} = 0\ ;2)\ u\left( \infty \right):u = C_{2}$| $C_{1} = C_{2}\frac{|Vo|}{v} = u\frac{|Vo|}{v}|\text{\ u}\left( y \right) = - u\frac{\left| \text{Vo} \right|}{v}\frac{v}{\left| \text{Vo} \right|}e^{\frac{- \left| \text{Vo} \right|}{v}y} + u = u\left( 1 - e^{\frac{- \left| \text{Vo} \right|}{v}y} \right)napr.\ styczne:\ \tau = u\frac{\partial u}{\partial y} = \rho u\frac{\partial u}{\partial y} = - \rho v\frac{\left| \text{Vo} \right|}{v}e^{\frac{- \left| \text{Vo} \right|}{v}} = - \rho u|Vo|$