P
P
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
:
:
T
T
h
h
e
e
c
c
o
o
n
n
c
c
e
e
p
p
t
t
S
S
y
y
n
n
t
t
h
h
e
e
s
s
i
i
s
s
P
P
r
r
o
o
p
p
e
e
r
r
t
t
i
i
e
e
s
s
A
A
p
p
p
p
l
l
i
i
c
c
a
a
t
t
i
i
o
o
n
n
s
s
Sergey Gaponenko
Institute of Molecular and Atomic Physics
National Academy of Sciences, Minsk, Belarus
PDF created with FinePrint pdfFactory Pro trial version
P
P
a
a
r
r
t
t
I
I
I
I
n
n
t
t
r
r
o
o
d
d
u
u
c
c
t
t
i
i
o
o
n
n
T
T
h
h
e
e
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
c
c
o
o
n
n
c
c
e
e
p
p
t
t
PDF created with FinePrint pdfFactory Pro trial version
Electrons vs photons and EM-waves
E –
energy,
ω
–
frequency,
k –
wavenumber,
c –
speed of light in vacuum
parameter
electrons
photons
rest mass
m
0
= 9,109534
⋅
10
−
31
kg
zero
charge
å
= 1,602189
⋅
10
−
19
C
zero
spin
1/2
1
dispersion law (in free space)
E = h
2
k
2
/2m
0
h
ω
= c k
density of states
(in 3 dimensions)
D E
m
E
(
)
/
/
/
/
=
3 2 1 2
1 2 1 2 3
2
π
h
D(
ω
) =
ω
2
/2
π
2
c
3
statistic
Fermi–Dirac
Bose–Einstein
PDF created with FinePrint pdfFactory Pro trial version
Properties of electrons which have no
analog for EM waves
•
e-e interactions (excitons, e-h plasma, Coulomb blockade…)
•
spin effects
•
Fermi-liquid in metals
•
superconductivity
•
etc…
PDF created with FinePrint pdfFactory Pro trial version
Isomorphism of Schroedinger and Helmholtz equations
Steady-state single-particle Schroedinger equation with U(x) potential
h
2
2
2
0
m
x
E
U x
x
∇
+
−
=
Ψ
Ψ
( )
( )
( )
[
]
Helmholtz equation for a EM-wave in
ε
(x) medium
∇
+
=
2
2
2
0
E x
x
c
E x
(
)
(
)
(
)
ε
ω
PDF created with FinePrint pdfFactory Pro trial version
Electron and EM-wave in a complex medium
→
∧∧∧∧∧
→
∧∧∧∧∧
A B
→ x
→
∧∧∧∧
↑
U(x)
electron
→
∧∧∧∧
↑
n(x)
EM-wave
PDF created with FinePrint pdfFactory Pro trial version
•
•
Textbook analogies of quantum particles
and EM-waves
PDF created with FinePrint pdfFactory Pro trial version
Textbook example 1: Reflection from a barrier
h
λ
2
=
h
[2m(E-U)]
1/2
(2mE)
1/2
E
U
x
Ψ
(x)
x
EM -wave
electron
λ
1
=
A
n
1
λ
2
=
λ
1
n
1
/n
2
λ
1
n
2
< n
1
x
PDF created with FinePrint pdfFactory Pro trial version
Tunneling: A quantum phenomenon?
Ψ
( x )
c o o r d i n a t e
E
U
0
E n e r g y
0
Leontovich and Mandelshtam, 1928
PDF created with FinePrint pdfFactory Pro trial version
Tunneling in optics
Transparency of thin metal films
p r o p a g a tio n a x is
m e ta l la y e r
tr a n s m i tte d
w a v e
r e f le c t e d
in c id e n t
0
E ( x )
PDF created with FinePrint pdfFactory Pro trial version
Electron in a well between two barriers:
resonant tunneling
transmittance
Energy
0
1
U
1
U
0
E
2
E
1
ψ
2
ψ
1
Energy
coordinate
A cornerstone phenomenon for nanoelectronics:
“Resonant tunneling in semiconductors: Physics and applications”. Kluwer 1991.
PDF created with FinePrint pdfFactory Pro trial version
Fabry-Perot resonator
(with metal mirrors)
0,0
0,5
1,0
λ
0
/2
λ
0
coordinate
metal mirror
metal mirror
tr
an
sm
it
ta
n
ce
wavelength
PDF created with FinePrint pdfFactory Pro trial version
1D-periodic structures
reflection
reflection
reflection
transmission
ω
=ck/n
wavenumber
fr
eq
u
en
cy
EM-w ave
g ap
Kr onig, Penney 1931
Elec tr on
coordinate
Energy
Wavenumber
PDF created with FinePrint pdfFactory Pro trial version
Photonic band structure in 1D
Brilloun zones for em-waves
E=pc/n
E=pc
E
n
er
g
y
Wavenumber
(c)
(b)
Wavenumber
forbidden
gap
π
/a
Wavenumber
+
π
/a
-
π
/a
forbidden
gap
(a)
1D continuous medium
Periodic medium
Reduced diagram
PDF created with FinePrint pdfFactory Pro trial version
0.5
1
1.5
2
0.2
0.4
0.6
0.8
1
0.5
1
1.5
2
0.2
0.4
0.6
0.8
1
Frequency [arb.units]
Frequency [arb.units]
Finite periodic structure
Bragg reflector
Periodic structure with defect
Planar Microcavity
Interference filter
PDF created with FinePrint pdfFactory Pro trial version
Photonic solids
•
Photonic band gap in optical
range can be performed in 1-,
2-, and 3 dimensions
•
Only a single group reported
on light localisation in a 3 d-
structure
•
Coherent backscattering is well
reproducible
Electrons 1982-83
Albada, Lagendijk (1985)
Wolf, Maret (1985)
Anderson 1958
John 1984 - theory
Lagendijk 1999 - expts
Yablonovitch 1987
Quantum theory of solids
1930-40
Coherent backscaterring
Random scaterrers
Localisation of light?
3D-periodicity
Photonic crystal
n
2
n
1
PDF created with FinePrint pdfFactory Pro trial version
P
P
a
a
r
r
t
t
I
I
I
I
F
F
a
a
b
b
r
r
i
i
c
c
a
a
t
t
i
i
o
o
n
n
o
o
f
f
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
PDF created with FinePrint pdfFactory Pro trial version
P
P
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
i
i
n
n
N
N
a
a
t
t
u
u
r
r
e
e
1-dimensional
:
iridescent coating
of fly’s wings
2-dimensional:
surface of moth’s eye,
human eye cornea
3-dimensional:
gem opals
Isaac Newton 1730 Interference in peacock feathers
PDF created with FinePrint pdfFactory Pro trial version
1
1
-
-
d
d
i
i
m
m
e
e
n
n
s
s
i
i
o
o
n
n
a
a
l
l
s
s
t
t
r
r
u
u
c
c
t
t
u
u
r
r
e
e
s
s
:
:
•
•
Thin-film vacuum deposition
(routine technique in laser production)
•
•
Thin film multilayer heterostructures
(MBE, MOCVD – Bragg
reflector in
semiconductor VCSEL lasers)
•
•
S
S
i
i
l
l
i
i
c
c
o
o
n
n
:
:
porous structures with periodic porosity
•
•
S
S
i
i
l
l
i
i
c
c
o
o
n
n
:
:
a
a
n
n
i
i
s
s
o
o
t
t
r
r
o
o
p
p
i
i
c
c
e
e
t
t
c
c
h
h
i
i
n
n
g
g
V. Tolmachev et al. Proceeding SPIE 2003
Si/air:
Largest Refraction index gradient!
PDF created with FinePrint pdfFactory Pro trial version
The field of 1D multilayer structures is rather old.
?
?
Is it possible to find smth novel in design and application
•
•
Propagation of em-wave in
non-periodic
structures (e. g. fractal-like) and application to
filter design:
Zhukovsky, Lavrinenko, Sandomirskii, Gaponenko, Phys. Rev. E 65, 036621 (2002)
•
•
Optical data coding:
Gaponenko et al. Opt. Communications 49, 205 (2002)
•
•
Omnidirectional reflector:
Chigrin, Gaponenko, et al. Appl. Phys. B 68, 25 (1999)
Joannopoulos, Fink et al. Patent US 6130780 (2000)
PDF created with FinePrint pdfFactory Pro trial version
2
2
D
D
S
S
i
i
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
P
P
r
r
e
e
-
-
p
p
a
a
t
t
t
t
e
e
r
r
n
n
e
e
d
d
a
a
n
n
i
i
s
s
o
o
t
t
r
r
o
o
p
p
i
i
c
c
e
e
t
t
c
c
h
h
i
i
n
n
g
g
•
•
Idea:
V.Lehmann and H.Foll, J.Electrochem. Soc. 137, 653 (1990)
•
•
Realisation:
many groups over the world, pore size from 0.3 to 10
µm
•
•
Pre-patterning:
holographic techniques, electron beam lithography and other.
Honey-comb structures on Si substrate Calculated band structure
Van Driel et al. MRS Proc. V.722 (2002) Meade et al, APL 1992
PDF created with FinePrint pdfFactory Pro trial version
Porous anodic alumina:
a 2D photonic crystal for the visible
Masuda et al – Appl. Phys. Lett. 71, 2770 (1997)
•
•
High transmission along pore axis (98% in our measurements)
•
•
High reflectance in the plane ortogonal to pore axis
PDF created with FinePrint pdfFactory Pro trial version
3
3
D
D
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
2 approaches
•
•
Self-organization: Solid state colloidal crystals
•
•
Combination of photolithography + selective etching
PDF created with FinePrint pdfFactory Pro trial version
O
O
p
p
a
a
l
l
-
-
b
b
a
a
s
s
e
e
d
d
s
s
t
t
r
r
u
u
c
c
t
t
u
u
r
r
e
e
s
s
Petrov, Bogomolov, Gaponenko et al.
Phys. Rev. Lett. 81, 77 (1998)
Bogomolov, Gaponenko et al.
Phys. Rev. E 81, 7619 (1997)
PDF created with FinePrint pdfFactory Pro trial version
First publications
Astratov, V. N., Bogomolov, V. N. et al., Il Nuovo Cimento 17, 1349 (1995)
Bogomolov, V.N., Gaponenko, S.V. et al. Applied Physics A 63, 613 (1996)
Opals can be impregnated with highly refractive materials:
•
•
Polymers
Petrov,…, Gaponenko et al, PRL 1998
•
•
TiO
2
Kapitonov, Gaponenko et al. Phys. Stat. Sol. B 1998, Vos et al. Science 1998
•
•
Q-dots
Astratov et al, Phys. Lett. 1996, Romanov et al, Phys. Stat. Sol. 1997, Gaponenko
et al. JETP Lett. 1998, Norris et al. 1998, Meseguer et al. J. Cryst. Growth 1997
•
•
Fullerenes
Zakhidov et al. Science 1998
•
•
Poly-Si
Vlasov, Norris Nature 2001
•
•
V
2
O
5
Golubev et al. Appl. Phys. Lett. 2001
•
•
Liquid crystals
Kitzerow et al. Appl. Phys. Lett. 2002
Then SiO
2
can be removed by etching. These structures are called
“
inverse opals”
PDF created with FinePrint pdfFactory Pro trial version
Band sturcture of inverse opal
photonic crystal with n=3.45
John and Busch, Opt. Expr. 2002
Inverse opal structure of poly-Si on
Si substrate
Vlasov et al. Nature 4141 (2001) 289
PDF created with FinePrint pdfFactory Pro trial version
3D PC:
Woodpile structures
Realizations: selective etching +wafer bonding: A masterpiece made by man
InP, GaAs:
Noda et al. Science 289 (2000) 604
Poly-Si:
Dood, PhD Thesis Amsterdam 2002
PDF created with FinePrint pdfFactory Pro trial version
Optical characteristics of a 4-layer woodpile InP photonic crystal
Omnidirectional 3D photonic band gap has been reported by the Kyoto Uni group!
Noda et al. Science 289 (2000) 604
PDF created with FinePrint pdfFactory Pro trial version
P
P
a
a
r
r
t
t
I
I
I
I
I
I
A
A
p
p
p
p
l
l
i
i
c
c
a
a
t
t
i
i
o
o
n
n
o
o
f
f
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
:
:
PDF created with FinePrint pdfFactory Pro trial version
T
T
r
r
a
a
d
d
i
i
t
t
i
i
o
o
n
n
a
a
l
l
o
o
p
p
t
t
i
i
c
c
a
a
l
l
f
f
i
i
b
b
e
e
r
r
:
:
Total reflection in high-refractive material
Drawbacks: finite absorption increase losses
bending results in leakage
PDF created with FinePrint pdfFactory Pro trial version
2D PC based waveguides for light bending
(Caltech–Corning)
Loncar et al. Appl. Phys. Lett. 77 (2000) 1937
Note:
Macroporous Si or porous Al
2
O
3
properly impregnated with other
materials can be used to fabricate planar “printed circuits”
PDF created with FinePrint pdfFactory Pro trial version
Waveguide inside a 3D photonic crystal
Materials: GaAs, InP
S. Noda et al. Science 289 (2000) 605; Appl. Phys. Lett. 75 (1999) 3741
PDF created with FinePrint pdfFactory Pro trial version
P
P
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
f
f
i
i
b
b
e
e
r
r
s
s
Hollow fiber:
no absorption losses!
Filled fiber:
polarization control
Team headed by Prof. Philip Russel (Bath Uni, England + Blaze Photonics)
Publications: Physics World 5, No. 8 p. 37 (1992), SCIENCE 285, 1537 (1999)
PDF created with FinePrint pdfFactory Pro trial version
A
A
p
p
p
p
l
l
i
i
c
c
a
a
t
t
i
i
o
o
n
n
:
:
A
A
n
n
t
t
i
i
-
-
r
r
e
e
f
f
l
l
e
e
c
c
t
t
i
i
n
n
g
g
c
c
o
o
a
a
t
t
i
i
n
n
g
g
s
s
Problem: Frenel reflection at Silicon/air boundary exceeds
30%
Solution: AR coating has been proposed using the moth eye design.
Lalanne et al. Nanotechnology 8, 53 (1997)
For a silicon surface patterned
with
an
800-nm-period
reflectance is reduced to below
2% over the 1.5–5.5-µm
band.
Motheye surfaces are capable of
maintaining low reflectance,
even as the incident angle is
increase to 50°.
Laser Focus World , August 1999
PDF created with FinePrint pdfFactory Pro trial version
A
A
p
p
p
p
l
l
i
i
c
c
a
a
t
t
i
i
o
o
n
n
o
o
f
f
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
:
:
PDF created with FinePrint pdfFactory Pro trial version
Spontaneous emission of photons
a result of interaction with EM-vacuum
E
G
hk
|G, 1
k
>
|E, 0
k
>
W
∝
D(k)
<E,0|H
int
|G,1>
PDF created with FinePrint pdfFactory Pro trial version
Density of states
: Definition
L
x
U
∆k =
π
/L
Universal function
in 3d-space
D(k)
=
k
2
2
2
π
D(E)= D k
dk
dE
( )
N E E
V
D E dE
E
E
(
)
(
)
,
1
2
1
2
=
∫
PDF created with FinePrint pdfFactory Pro trial version
DOS for photons in 3d-space
0
1
2
3
0
25
50
D(E) = 4
π
E
2
/(hc)
3
D(E),
µ
-3
eV
-1
E = h
ν
, eV
photon
D(
ω
)=
1
2
2
2
3
π
ω
⋅
c
PDF created with FinePrint pdfFactory Pro trial version
E. Pursell 1947
– first prediction of modified spontaneous
emission in mesoscopic structures
Model mesoscopic structures in which the effect is being studied:
•
Media with n > 1
•
Microcavities
•
Thin layers
•
Photonic crystals (3d and 2d)
•
Cell membranes
•
Metal–dielectric interfaces
•
Nuclear reactions
F
F
r
r
e
e
e
e
z
z
i
i
n
n
g
g
o
o
f
f
s
s
p
p
o
o
n
n
t
t
a
a
n
n
e
e
o
o
u
u
s
s
d
d
e
e
c
c
a
a
y
y
i
i
n
n
p
p
e
e
r
r
i
i
o
o
d
d
i
i
c
c
m
m
e
e
d
d
i
i
a
a
V.P.Bykov JETP 1972
E.Yablonovitch PRL 1987 –
The PC concept
PDF created with FinePrint pdfFactory Pro trial version
1
1
D
D
-
-
P
P
C
C
:
:
Quantum confined Si
nanocrystals in porous Si
microcavity
L
L
.
.
P
P
a
a
v
v
e
e
s
s
i
i
e
e
t
t
a
a
l
l
.
.
P
P
h
h
y
y
s
s
.
.
R
R
e
e
v
v
.
.
B
B
1
1
9
9
9
9
5
5
PDF created with FinePrint pdfFactory Pro trial version
Anisotropic light emission from porous alumina structures
PL enhancement of ions embedded in porous Al
2
O
3
N.V. Gaponenko et al.
Appl. Phys. Letters 76, 1006 (2000)
J. Electrochem. Soc. 148, H13 (2001)
149, H49 (2002)
z
y
x
S.Gaponenko, N.Gaponenko, A.Lutich, I.Molchan, J. Appl. Spectr. 2003
PDF created with FinePrint pdfFactory Pro trial version
Light emitting device utilizing a periodic dielectric structure
Efficient extraction of light: A combination of antireflection coating and spontaneous emission control
PDF created with FinePrint pdfFactory Pro trial version
Decay of Eu
3+
complexes in opal-based structures
Decay time distributions in bulk polystyrol and in a opal-based photonic crystal
Ksenzov, Pavich, Petrov, Gaponenko, in press
PDF created with FinePrint pdfFactory Pro trial version
A
A
p
p
p
p
l
l
i
i
c
c
a
a
t
t
i
i
o
o
n
n
o
o
f
f
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
s
s
:
:
PDF created with FinePrint pdfFactory Pro trial version
1D photonic crystals are being used in VCSEL as
Bragg mirrors
PDF created with FinePrint pdfFactory Pro trial version
2D photonic crystals are involved in semiconductor laser
design in 3 ways:
•
Semiconductor laser mirrors
Forchel et al. Semicond. Sci. Tech. 16 (2001) 227;
Appl. Phys. Lett. 79 (2001) 4091
•
Distributed feedback structures
•
Formation of high-Q microcavities
via defects in PC lattice
PDF created with FinePrint pdfFactory Pro trial version
In DFB lasers wavelength-selective feedback is formed by means of
coupling of active medium with grating.
For example in dye DFB lasers grating is formed inside active medium
using 2 interfering pump beam forming a standing wave and a periodic
alteration of gain coefficient and refraction index.
In a semiconductor DFB laser a grating is attached to active layer so
that difracted light multiply comes back to gain region
PDF created with FinePrint pdfFactory Pro trial version
Recently
Susumu Noda et al. (Kyoto Uni, Japan)
have demonstrated a 2D
PC based InP DFB laser
Imada et al. Appl. Phys. Lett. 75 (1999) 316
PDF created with FinePrint pdfFactory Pro trial version
6 equivalent directions exist which provide
multiple reflection of emitted light
PDF created with FinePrint pdfFactory Pro trial version
The spectrum of outcoming radiation is the same in all directions
Imada et al. Phys. Rev. B 65 (2002) 195306
PDF created with FinePrint pdfFactory Pro trial version
Comment:
Gain medium and PC are separated.
Does PC actually plays a role of a feedback structure or
only helps to extract efficiently outcoming light?
Theory of 2D PC-based DFB laser
with gain medium inside PC
S. Nojima (NTT Basic Res. Lab. Japan)
Phys. Rev. B 65 (2002) 073103
J. Appl. Phys. 90 (2001) 545
Loop-like reccurent-photon feedback is predicted for 2d DFB laser
contrary to straight-forward feedback in a 1D DFB-laser
PDF created with FinePrint pdfFactory Pro trial version
Two-dimensional photonic band-gap defect mode laser
Caltech group (Painter, Scherer, Yariv, Dapkus et al)
Science 284 (1999) 1819
Material:
InGaAsP
PDF created with FinePrint pdfFactory Pro trial version
Spectral and power features
λ
= 1.504
µ
m,
∆λ
= 0.2 nm, T = 143 K
optical pumping by a 830 nm semiconductor laser
PDF created with FinePrint pdfFactory Pro trial version
Two-dimensional photonic band-gap defect mode laser
(Korean Adv. Inst. Technol.)
InGaAsP on InP, room temperature operation,
pump by 980 nm 1 MHz semiconductor laser
Hwang et al Appl. Phys. Lett. 76 (2000) 2982
PDF created with FinePrint pdfFactory Pro trial version
3D
structures based on opals with laser dyes
Frolov, …, Zakhidov et al. Opt. Comm. 162 (1999) 241
610
615
620
0
100
200
300
400
500
Эксперимент
Лоренц
И
н
те
нс
ив
н
ос
ть
,
от
н.
е
д
.
Длина волны, нм
Gaponenko et al. 1999, unpublished
Drawbacks:
Block domain structure of macro-opal samples. + photobleaching of dye.
Plans:
To use smaller monoblock samples, to apply picosecond pumping
PDF created with FinePrint pdfFactory Pro trial version
Shkunov, …, Zakhidov, … Adv. Funct. Mat. 12, 21 (2002)
PDF created with FinePrint pdfFactory Pro trial version
One more PC application:
Heat isolators and heat conductors.
PDF created with FinePrint pdfFactory Pro trial version
O
O
p
p
t
t
i
i
c
c
a
a
l
l
c
c
i
i
r
r
c
c
u
u
i
i
t
t
r
r
y
y
b
b
a
a
s
s
e
e
d
d
o
o
n
n
p
p
h
h
o
o
t
t
o
o
n
n
i
i
c
c
c
c
r
r
y
y
s
s
t
t
a
a
l
l
:
:
A blue dream or a bright future?
Figure courtesy to S. Noda
PDF created with FinePrint pdfFactory Pro trial version
C
C
o
o
n
n
c
c
l
l
u
u
s
s
i
i
o
o
n
n
s
s
Books
1. P. Yeh “Optical Waves in Layered Media” (Wiley, NY 1988).
2. J. Joannopoulos, R. Meade, J. Winn
“Photonic Crystals: Molding the Flow of Light” Princeton, 1995
3. Kazuaki Sakoda “Optical Properties of Photonic Crystals “ 2001
Springer
Review
Krauss T F, De la Rue R M, PROG QUANT ELECTRON 23: 51-96 1999.
Special issues:
JOSA B 1993,
J. Mod. Opt. 1994,
J. Lightwave Techn. 1999, MRS Bull. 2001
Web-site
supported by Yuri Vlasov
PDF created with FinePrint pdfFactory Pro trial version
A
A
c
c
t
t
i
i
v
v
i
i
t
t
y
y
i
i
n
n
M
M
i
i
n
n
s
s
k
k
1
1
D
D
:
:
Theory (IMAPh—BSU)
Zn/ZnSe-multilayer structures (with IRE, Russia)
Optical properties of multilayer fractal structures
2
2
D
D
:
:
Theory
Synthesis: porous alumina (BSUIR)
Anisotropic optical properties of porous alumina incl. PL
Impregnation with dyes, lanthanides, polymers
Lasing
???
3
3
D
D
:
:
Theory
Light emission in opal-based PC
Impregnation with dyes, lanthanides, polymers
Lasing
???
PDF created with FinePrint pdfFactory Pro trial version