fi : Rn R i = 1, . . . , k k e" 2 S ‚" Rn
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S.
fi i = 1, . . . , k
f(x) = [f1(x), f2(x), . . . , fk(x)]T S
Rn S = "
x = [x1, x2, . . . , xn]T " S
S S
fi : Rn R i = 1, . . . , k k e" 2 S ‚" Rn
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S.
Z := f(S)
Rk
z " Z z = f(x) x " S
fi : Rn R i = 1, . . . , k k e" 2 S ‚" Rn
Å„Å‚
ôÅ‚
òÅ‚max{f1(x), f2(x), . . . , fk(x)}
ôÅ‚
ółx " S
Å„Å‚
ôÅ‚- min{-f1(x), -f2(x), . . . , -fk(x)}
òÅ‚
ôÅ‚
ółx " S.
Å„Å‚
ôÅ‚ - 1, x2}
òÅ‚min{x
ôÅ‚
ółx " [0, 1].
x = 0
Å„Å‚
ôÅ‚ - x, x2}
òÅ‚min{1
ôÅ‚
ółx " [0, 1].
x = 0
x = 1
Rk k e" 2
R [1, 2]T
[3, 3]T [1, 4]T [2, 3]T Rk
Á ‚" X × X
Á
" x " X x Á x
" x, y, z " X (x Á y '" y Á z) Ò! x Á z
" x, y " X (x Á y '"y Á x) Ò! x = y
Á
Á X
" x, y " X (x Á y ("y Á x)
Á X
Á
Rk k e" 2 d"
" x, y " Rk x d" y Ò! " i = 1, . . . , k xi d" yi .
x d" y Ô! x - y " Rk := {w " Rn : wi d" 0, i = 1, . . . , k}.
-
Rk
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S.
x " S
<" " x " S f(x) d" f(x ) '" f(x) = f(x ) Ô!
<" " x " S (" i " {1, . . . , k} fi(x) d" fi(x ) '" " i0 " {1, . . . , k} fi (x) < fi (x ) .
0 0
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S.
x
f(S) )" (Rk + {f(x )}) = {f(x )} (Z )" (Rk + {f(x )}) = {f(x )}).
- -
R2
Rk k > 2
w = (w1, . . . , wk) " Rk k wi = 1
+
i=1
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S.
Å„Å‚
k
ôÅ‚
ôÅ‚
ôÅ‚
ôÅ‚ wifi(x) min
òÅ‚
i=1
(P (w))
ôÅ‚
ôÅ‚
ôÅ‚
ôÅ‚
ółx " S.
x w wi > 0
i = 1, . . . , k x w
Å„Å‚
ôÅ‚ - x, x2}
òÅ‚min{1
ôÅ‚
ółx " [0, 1].
w = (w1, w2) w1, w2 > 0 w1 + w2 = 1
w1 = 1 - w2 w2 " (0, 1)
Å„Å‚
ôÅ‚ - w2)(1 - x) + w2x2 min
òÅ‚(1
P (wMOP -b)
ôÅ‚
ółx " [0, 1].
1-w2
f(x) = w2(x - )2 -
2w2
(1-w1)(1-5w2)
4w2
1-w2
w2 " [1, 1)
2 2w2 3
xw =
min
1
1 w2 " (0, )
3
(1 - y, y2), y " (0, 1]
(P (wMOP -b))
(1, 0)
x w
x w
S ‚" Rk fi
S x
Å„Å‚
ôÅ‚
òÅ‚min{f1(x), f2(x), . . . , fk(x)}
(MOP )
ôÅ‚
ółx " S,
k
w = (w1, . . . , wk) wi e" 0 i = 1, . . . , k wi = 1 x
i=1
Wyszukiwarka
Podobne podstrony:
wyk OLB pr zalwyk OLB PL zast 2012 13wyk OLB pr komwyk OLB pr lok 1wyk OLB prog dys 17 PodTel wyk? Systemy WielokrotneWyk ad 02Mat Bud wykwyk(Ia) wstęp PBiIDStan cywilny, wyk struktura ludnosci wg 5 strsi ownie wyk?Socjologia klasyczna WYK? 7 i 8więcej podobnych podstron