Mathematical Formula

background image

MATHEMATICAL FORMULA

Quadratic Formula

• The roots of the quadratic equation

are

0

2

=

+

+

c

bx

ax

a

ac

b

b

x

x

2

4

,

2

2

1

±

=

Trigonometric Identities

1.

( )

x

x

sin

sin

=

2.

( )

x

x

cos

cos

=

3.

x

x

x

cos

sin

tan

=

4.

x

x

tan

1

cot

=

5.

x

x

sin

1

csc

=

6.

x

x

cos

1

sec

=

7.

(

)

x

x

o

cos

90

sin

±

=

±

8.

(

)

x

x

o

sin

90

cos

m

=

±

9.

(

)

x

x

o

sin

180

sin

=

±

10.

(

)

x

x

o

cos

180

cos

=

±

11.

1

sin

cos

2

2

=

+

x

x

12.

x

x

2

2

sec

tan

1

=

+

13.

x

x

2

2

csc

1

cot

=

+

14.

(

)

y

x

y

x

y

x

sin

cos

cos

sin

sin

±

=

±

15.

(

)

y

x

y

x

y

x

sin

sin

cos

cos

cos

m

=

±

16.

(

)

y

x

y

x

y

x

tan

tan

1

tan

tan

tan

m

±

=

±

17.

x

x

x

cos

sin

2

2

sin

=

18.

1

cos

2

sin

2

1

sin

cos

2

cos

2

2

2

2

=

=

=

x

x

x

x

x

19.

x

x

x

2

tan

1

tan

2

2

tan

=

20.

(

)

x

x

2

cos

1

2

1

sin

2

=

21.

(

)

x

x

2

cos

1

2

1

cos

2

+

=

22.

(

)

(

[

]

y

x

y

x

y

x

+

=

cos

cos

2

1

sin

sin

)

23.

(

)

(

[

]

y

x

y

x

y

x

+

+

=

cos

cos

2

1

cos

cos

)

24.

(

)

(

[

]

y

x

y

x

y

x

+

+

=

sin

sin

2

1

cos

sin

)

background image

25.

⎛ ±

=

±

2

sin

2

cos

2

sin

sin

y

x

y

x

y

x

m

26.

⎛ −

⎛ +

=

+

2

cos

2

cos

2

cos

cos

y

x

y

x

y

x

27.

⎛ −

⎛ +

=

2

sin

2

sin

2

cos

cos

y

x

y

x

y

x

28.

; Euler’s Theorem

x

j

x

e

jx

sin

cos

±

=

±

29.

2

cos

jx

jx

e

e

x

+

=

30.

j

e

e

x

jx

jx

2

sin

=

31.

(

)

A

B

B

A

R

x

R

x

B

x

A

1

2

2

tan

,

cos

sin

cos

=

+

=

=

±

θ

θ

m

32.

(

)

B

A

B

A

R

x

R

x

B

x

A

1

2

2

tan

,

sin

sin

cos

=

+

=

±

=

±

θ

θ

33.

C

b

B

b

A

a

sin

sin

sin

=

=

(law of sinus)

34.

(law of cosinus)

A

bc

c

b

a

cos

2

2

2

2

+

=

35.

(

)

(

)

b

a

b

a

B

A

B

A

+

=

+

2

1

tan

2

1

tan

(law of tangents)


Values of cosine, sine and exponential functions

1.

( )

n

n

1

cos

=

π

2.

0

sin

=

π

n

3.

1

2

cos

=

π

n

4.

0

2

sin

=

π

n

5.

( )

⎪⎩

=

=

=

odd

n

even

n

n

n

;

0

;

1

2

cos

2

π

6.

( )

⎪⎩

=

=

=

even

n

odd

n

n

n

;

0

;

1

2

sin

2

1

π

7.

( )

n

jn

e

1

=

π

8.

1

2

=

π

n

j

e

9.

( )

( )

⎪⎩

=

=

=

odd

n

j

even

n

e

n

n

n

j

;

1

;

1

2

1

2

2

π


background image

Hyperbolic Functions

1.

(

)

x

x

e

e

x

=

2

1

sinh

2.

(

)

x

x

e

e

x

+

=

2

1

cosh

3.

x

x

x

cosh

sinh

tanh

=

4.

x

x

tanh

1

coth

=

5.

x

hx

sinh

1

csc

=

6.

x

hx

cosh

1

sec

=

7.

(

)

y

x

y

x

y

x

sinh

cosh

cosh

sinh

sinh

±

=

±

8.

(

)

y

x

y

x

y

x

sinh

sinh

cosh

cosh

cosh

±

=

±


Differentiation

1.

( )

(

)

( )

dx

x

du

a

x

au

dx

d

=

2.

( )

(

)

( ) ( )

(

)

1

=

n

n

x

f

x

f

n

x

f

dx

d

3.

( ) ( )

(

)

( )

( )

dx

x

du

v

dx

x

dv

u

x

v

x

u

dx

d

+

=

4.

( )

( )

( )

( )

2

v

dx

x

dv

u

dx

x

du

v

x

v

x

u

dx

d

=

⎟⎟

⎜⎜

5.

( )

( )

( )

( )

a

x

f

a

a

dx

d

x

f

x

f

ln

=

6.

( )

( )

( )

( )

x

f

e

e

dx

d

x

f

x

f

=

7.

( )

(

)

( ) ( )

x

f

x

f

x

f

dx

d

=

1

ln

8.

( )

(

)

( )

( )

x

f

x

f

x

f

dx

d

cos

sin

=

9.

( )

(

)

( )

x

f

x

f

x

f

dx

d

sin

cos

=

( )

10.

( )

(

)

( )

( )

x

f

x

f

x

f

dx

d

2

sec

tan

=

11.

( )

(

)

( )

( )

( )

x

f

x

f

x

f

x

f

dx

d

cot

csc

csc

=

12.

( )

(

)

( )

( )

( )

x

f

x

f

x

f

x

f

dx

d

tan

sec

sec

=

background image

13.

( )

(

)

( )

x

f

x

f

x

f

dx

d

2

csc

cot

=

( )

14.

( )

(

)

( )

( )

[

]

2

1

1

sin

x

f

x

f

x

f

dx

d

=

15.

( )

(

)

( )

( )

[

]

2

1

1

cos

x

f

x

f

x

f

dx

d

=

16.

( )

(

)

( )

( )

[

]

2

1

1

tan

x

f

x

f

x

f

dx

d

+

=

17.

( )

(

)

( )

( ) ( )

[

]

1

csc

2

1

=

x

f

x

f

x

f

x

f

dx

d

18.

( )

(

)

( )

( ) ( )

[

]

1

sec

2

1

=

x

f

x

f

x

f

x

f

dx

d

19.

( )

(

)

( )

( )

[

]

2

1

1

cot

x

f

x

f

x

f

dx

d

+

=

Indefinite Integration

1.

c

ax

dx

a

+

=

2.

( )

( ) ( )

( )

du

u

v

x

v

x

u

dv

x

u

=

; Integration by parts

3.

1

,

1

1

+

+

=

+

n

c

n

x

dx

x

n

n

4.

+

=

c

x

dx

x

ln

1

5.

c

a

a

dx

a

x

x

+

=

ln

6.

c

e

dx

e

x

x

+

=

7.

+

=

c

x

x

x

dx

x

ln

ln

8.

c

x

dx

x

+

=

cos

sin

9.

+

=

c

x

dx

x

sin

cos

10.

(

)

+

=

c

x

dx

x

cos

ln

tan

11.

(

)

+

=

c

x

x

dx

x

cot

csc

ln

csc

12.

(

)

+

+

=

c

x

x

dx

x

tan

sec

ln

sec

13.

(

)

+

=

c

x

dx

x

sin

ln

cot

14.

c

x

x

x

dx

x

+

+

=

2

1

1

1

sin

sin

15.

c

x

x

x

dx

x

+

=

2

1

1

1

cos

cos

16.

(

)

c

x

x

x

dx

x

+

+

=

2

1

1

1

ln

2

1

tan

tan

background image

17.

c

x

x

x

x

x

dx

x

+

⎟⎟

⎜⎜

+

+

=

2

1

1

1

1

ln

csc

csc

18.

c

x

x

x

x

x

dx

x

+

⎟⎟

⎜⎜

+

=

2

1

1

1

1

ln

sec

sec

19.

(

)

c

x

x

x

dx

x

+

+

+

=

2

1

1

1

ln

2

1

tan

cot

20.

b

a

c

b

a

x

b

a

b

a

x

b

a

dx

bx

ax

+

+

+

=

,

)

(

2

)

sin(

)

(

2

)

sin(

sin

sin

21.

b

a

c

b

a

x

b

a

b

a

x

b

a

dx

bx

ax

+

+

+

+

=

,

)

(

2

)

sin(

)

(

2

)

sin(

cos

cos

22.

b

a

c

b

a

x

b

a

b

a

x

b

a

dx

bx

ax

+

+

+

=

,

)

(

2

)

cos(

)

(

2

)

cos(

cos

sin

23.

c

a

ax

x

dx

ax

+

=

4

2

sin

2

sin

2

24.

c

a

ax

x

dx

ax

+

+

=

4

2

sin

2

cos

2

25.

+

=

dx

x

x

m

x

x

dx

x

x

m

m

m

cos

cos

sin

1

26.

=

dx

x

x

m

x

x

dx

x

x

m

m

m

sin

sin

cos

1

27.

=

dx

e

x

a

m

a

e

x

dx

e

x

ax

m

ax

m

ax

m

1

28.

c

b

a

bx

be

bx

ae

dx

bx

e

ax

ax

ax

+

+

=

2

2

cos

sin

sin

29.

c

b

a

bx

be

bx

ae

dx

bx

e

ax

ax

ax

+

+

+

=

2

2

sin

cos

cos

Definite Integration

1.

=

π

2

0

0

sin

dx

ax

2.

=

π

2

0

0

cos

dx

ax

3.

=

π

π

0

2

2

sin

dx

ax

4.

=

π

π

0

2

2

cos

dx

ax

5.

⎪⎩

=

=

π

π

0

;

2

1

;

0

sin

sin

n

m

n

m

dx

nx

mx

6.

⎪⎩

=

=

π

π

0

;

2

1

;

0

cos

cos

n

m

n

m

dx

nx

mx

background image

7.

⎪⎩

=

+

=

+

=

π

0

2

2

;

2

;

0

cos

sin

odd

n

m

n

m

m

even

n

m

dx

nx

mx

8.



<

=

>

=

0

0

;

2

0

;

0

0

;

2

sin

a

a

a

dx

x

ax

π

π

9.

0

;

2

0

2

2

>

=

+

a

dx

x

a

a

π

10.

0

;

sin

0

2

2

>

+

=

a

b

a

b

dx

bx

e

ax

11.

0

;

cos

0

2

2

>

+

=

a

b

a

a

dx

bx

e

ax


L’Hopital Rule

If

, then

( ) ( )

0

0

0

=

= h

f

( )

( )

( )

( )

x

h

x

f

x

x

h

x

f

x

=

0

lim

0

lim


Limit

1.

590452354

7182818284

.

2

1

1

lim

=

⎛ +

=

x

x

x

e

2.

1

)

sin(

0

lim

=

x

x

x


Complex Number

jy

x

z

+

=

Rectangular form

θ

/

r

z

=

Polar form

θ

j

re

z

=

Exponential form

x

y

y

x

r

r

y

r

x

1

2

2

tan

,

sin

,

cos

=

+

=

=

=

θ

θ

θ







background image

Power Series

Taylor Series

(

)

( )

( )

( )

( )

( )

n

n

x

n

a

f

x

a

f

x

a

f

x

a

f

a

f

a

x

f

!

......

!

3

!

2

3

2

+

′′′

+

′′

+

+

=

+

Maclaurin’s Series

( )

( )

( )

( )

( )

( )

n

n

x

n

f

x

f

x

f

x

f

f

x

f

!

0

......

!

3

0

!

2

0

0

0

3

2

+

′′′

+

′′

+

+

=

Binomial Series

(

)

(

)

(

)(

)

.....

!

3

2

1

!

2

1

1

1

3

2

+

+

+

+

=

+

x

n

n

n

x

n

n

nx

x

n

Standard Series

1.

9

7

5

3

!

9

1

!

7

1

!

5

1

!

3

1

sin

x

x

x

x

x

x

+

+

=

2.

8

6

4

2

!

8

1

!

6

1

!

4

1

!

2

1

1

cos

x

x

x

x

x

+

+

=

3.

9

7

5

3

!

9

7936

!

7

272

!

5

16

!

3

2

tan

x

x

x

x

x

x

+

+

+

+

=

4.

9

7

5

3

93555

2

4725

1

945

2

45

1

3

1

1

cot

x

x

x

x

x

x

x

=

5.

9

7

5

3

3421440

73

604800

127

15120

31

360

7

6

1

1

csc

x

x

x

x

x

x

x

+

+

+

+

+

=

6.

8

6

4

2

8064

277

720

61

24

5

2

1

1

sec

x

x

x

x

x

+

+

+

+

=

7.

(

)

9

8

7

6

5

4

3

2

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

ln

x

x

x

x

x

x

x

x

x

x

+

+

+

+

=

+

8.

9

8

7

6

5

4

3

2

!

9

1

!

8

1

!

7

1

!

6

1

!

5

1

!

4

1

!

3

1

!

2

1

1

x

x

x

x

x

x

x

x

x

e

x

+

+

+

+

+

+

+

+

+

=



Wyszukiwarka

Podobne podstrony:
adresowanie kopert i formularze
Formułowanie strategii marketingowej
(ebook PDF)Shannon A Mathematical Theory Of Communication RXK2WIS2ZEJTDZ75G7VI3OC6ZO2P57GO3E27QNQ
Formularz zmian w funduszach LeoLife
Mathematics HL P1 May 1995
Mathematics HL May 2004 TZ1 P1
Metastock Formule X Trading System fixed
Mathematics HL May 2003 P1
MGLab Formularz VIII 4
Brittish Mathematical Olympiad(2003)
Mathematics HL November 2008P3 Sets
MGLab Formularz III 2
Mathematics HL Nov 2002 P1 $
MGLab Formularz VIII 3
Formularze i raporty
formularz PPK Magnusson 2010, ELSA

więcej podobnych podstron