sin
α
150cm
L2
:=
L3
450 cm
⋅
(
)
2
150 cm
⋅
(
)
2
+
:=
L3 474.342 cm
=
cos
γ
450cm
L3
:=
sin
γ
150cm
L3
:=
L4
300 cm
⋅
:=
L5
L3
:=
L6
L2
:=
cos
α
0.936
=
sin
α
0.351
=
L7
L1
:=
L8
300cm
:=
cos
β
0.64
=
sin
β
0.768
=
L11
L8
:=
cos
γ
0.949
=
sin
γ
0.316
=
L9
250cm
:=
L10
L9
:=
Warszawa 09.06.08
Politechnika Warszawska
Wydział In
ż
ynierii l
ą
dowej
Instytut Mechaniki Konstrukcji In
ż
ynierskich
Zakład Wytzrymało
ś
ci Materiałów Teorii Spr
ęż
ysto
ś
ci i Plastyczno
ś
ci
Praca projektowa
Wykonał Piotr Skorek
Zadanie 1
Dane do zadania
:
kN
1000 N
⋅
:=
E
2.05 10
4
⋅
kN
cm
2
⋅
:=
RH
19
kN
cm
2
⋅
:=
Re
23
kN
cm
2
⋅
:=
R
20.5
kN
cm
2
⋅
:=
λ
gr
π
E
RH
:=
Geometria kratownicy
L1
250 cm
⋅
(
)
2
300 cm
⋅
(
)
2
+
:=
L1 390.512 cm
=
cos
β
250cm
L1
:=
sin
β
300cm
L1
:=
L2
400 cm
⋅
(
)
2
150 cm
⋅
(
)
2
+
:=
L2 427.2cm
=
cos
α
400cm
L2
:=
S2 61.452 kN
=
S1
89.88
−
kN
=
S2 cos
α
⋅
S1 cos
β
⋅
+
0
=
R1 S2 sin
α
⋅
−
S1 sin
β
⋅
+
0
=
W
ę
zeł 1
Obliczenie sił podłu
ż
nych w kratownicy
H5
0 kN
⋅
:=
V5 19.375 kN
=
V5
150 kN
⋅
250
⋅
cm
40kN 550
⋅
cm
−
800cm
:=
S11
0
:=
S9
0
:=
R1 90.625 kN
=
R1
150kN 550
⋅
cm
40kN 250
⋅
cm
−
800cm
:=
S10
0
:=
S8
0
:=
Obliczenie reakcji
OK
!
S2 sin
α
⋅
S3 cos
γ
⋅
+
S5 cos
γ
⋅
+
S6 sin
α
⋅
+
0 N
=
W
ę
zeł 3 - spr
S5 57.724 kN
=
S4
30.556
−
kN
=
S4
−
S5 sin
γ
⋅
−
S7 cos
β
⋅
+
0
=
40kN
S7 sin
β
⋅
−
S5 cos
γ
⋅
−
0
=
W
ę
zeł 4
S7
19.216
−
kN
=
S6 13.138 kN
=
V5 S6 sin
α
⋅
−
S7 sin
β
⋅
+
0
=
S6 cos
α
⋅
S7 cos
β
⋅
+
0
=
W
ę
zeł 5
S4
30.556
−
kN
=
S3
85.331
−
kN
=
S4 S3 sin
γ
⋅
+
S1 cos
β
⋅
−
0
=
S1
−
sin
β
⋅
150kN
−
S3 cos
γ
⋅
−
0
=
W
ę
zeł 2
λ
236.22
=
Rkr
π
2
E
⋅
λ
2
:=
Rkr 3.626
kN
cm
2
=
Pkr
Rkr A2
⋅
:=
Pkr 25.454 kN
=
3.W pozostałych pr
ę
tach
3.1 rozci
ą
ganych (5)
Pmax
S5
:=
Pmax 57.724 kN
=
A3r
Pmax
R
:=
A3r 2.816cm
2
=
3.2
ś
ciskanych (1,3, 7)
pr
ę
t 1 i 3
L1 390.512 cm
=
Pmax1
S1
:=
L3 474.342 cm
=
Pmax3
S3
:=
λ
gr
103.193
=
R
20.5
kN
cm
2
=
Pmax1
89.88
−
kN
=
Pmax3
85.331
−
kN
=
Zadanie 2
1.W pr
ę
tach rozci
ą
ganych pasa dolnego (2, 6)
Pmax
S2
:=
Pmax 61.452 kN
=
A1
Pmax
R
:=
A1 2.998cm
2
=
Przyj
ę
to przekrój ][40:
A1
7.02 cm
2
⋅
:=
Iy1
14.52 cm
4
⋅
:=
Iz1
11.40 cm
4
⋅
:=
iy1
1.44 cm
⋅
:=
iz
1.27 cm
⋅
:=
2.W pr
ę
tach
ś
ciskanych pasa górnego (4)
L4 300 cm
=
Pmax
S4
:=
Pmax
30.556
−
kN
=
λ
gr
103.193
=
R
20.5
kN
cm
2
=
Dla przekroju ][40
imin
1.27 cm
⋅
:=
A2
7.02 cm
2
⋅
:=
λ
L4
imin
:=
λ
1
L1
imin
:=
λ
1
158.102
=
Rkr1
π
2
E
⋅
λ
1
2
:=
λ
3
L3
imin
:=
λ
3
192.041
=
Rkr3
π
2
E
⋅
λ
3
2
:=
Rkr1 8.094
kN
cm
2
=
Pkr1
Rkr1 A3s
⋅
:=
Rkr3 5.486
kN
cm
2
=
Pkr3
Rkr3 A3s
⋅
:=
Pkr1 140.84 kN
=
Pkr3 95.458 kN
=
A3
A3s
:=
Zadanie 3
Obliczenie przemieszcze
ń
w w
ęź
le 3(K)
Reakcje
R1j
1
2
:=
V5j
1
2
:=
Dla przekroju zło
ż
onego z dwóch k
ą
towników 65x65x6
a
, grubo
ść
przewi
ą
zki 10
imin
2.48 cm
⋅
:=
A3s
15.10 cm
2
⋅
:=
λ
1
L1
imin
:=
λ
1
157.465
=
Rkr1
π
2
E
⋅
λ
1
2
:=
λ
3
L3
imin
:=
λ
3
191.267
=
Rkr3
π
2
E
⋅
λ
3
2
:=
Rkr1 8.16
kN
cm
2
=
Pkr1
Rkr1 A3s
⋅
:=
Rkr3 5.531
kN
cm
2
=
Pkr3
Rkr3 A3s
⋅
:=
Pkr1 123.215 kN
=
Pkr3 83.512 kN
=
Przekrój nie spełnia wymaga
ń
Dla przekroju zło
ż
onego z dwóch k
ą
towników 65x65x7, grubo
ść
przewi
ą
zki 10
imin
2.47 cm
⋅
:=
A3s
17.40 cm
2
⋅
:=
wk 0.148cm
=
wk
1
E A1
⋅
L2 S2
⋅
S2j
⋅
L6 S6
⋅
S6j
⋅
+
(
)
⋅
1
E A2
⋅
L4 S4
⋅
S4j
⋅
(
)
⋅
+
1
E A3
⋅
L1 S1
⋅
S1j
⋅
L3 S3
⋅
S3j
⋅
+
L5 S5
⋅
S5j
⋅
+
L7 S7
⋅
S
⋅
+
(
⋅
+
:=
OK
!
S2j sin
α
⋅
S3j cos
γ
⋅
+
S5j cos
γ
⋅
+
S6j sin
α
⋅
+
1
−
0
=
W
ę
zeł 3 - spr
S7j
S1j
:=
S6j
S2j
:=
S5j
S3j
:=
Z symetri obci
ąż
enia i geometri:
S4j
0.444
−
=
S3j 0.402
=
S4j S3j sin
γ
⋅
+
S1j cos
β
⋅
−
0
=
S1j
−
sin
β
⋅
S3j cos
γ
⋅
−
0
=
W
ę
zeł 2
S2j 0.339
=
S1j
0.496
−
=
S2j cos
α
⋅
S1j cos
β
⋅
+
0
=
R1j S2j sin
α
⋅
−
S1j sin
β
⋅
+
0
=
W
ę
zeł 1
Obliczenie sił podłu
ż
nych w kratownicy
Ke4
479.7
0
479.7
−
0
0
0
0
0
479.7
−
0
479.7
0
0
0
0
0
kN
cm
=
Ke4
E A2
⋅
L4
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
0
:=
c
1
:=
Pr
ę
t 4
Ke3
75.199
225.597
−
75.199
−
225.597
225.597
−
676.791
225.597
676.791
−
75.199
−
225.597
75.199
225.597
−
225.597
676.791
−
225.597
−
676.791
kN
cm
=
Ke3
E A3
⋅
L3
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
450cm
L3
:=
c
150
−
cm
L3
:=
Pr
ę
t 3
Ke2
295.336
110.751
−
295.336
−
110.751
110.751
−
41.532
110.751
41.532
−
295.336
−
110.751
295.336
110.751
−
110.751
41.532
−
110.751
−
41.532
kN
cm
=
Ke2
E A1
⋅
L2
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
150
−
cm
⋅
L2
:=
c
400 cm
⋅
L2
:=
Pr
ę
t 2
Ke1
374.35
449.221
374.35
−
449.221
−
449.221
539.065
449.221
−
539.065
−
374.35
−
449.221
−
374.35
449.221
449.221
−
539.065
−
449.221
539.065
kN
cm
=
Ke1
E A3
⋅
L1
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
300 cm
⋅
L1
:=
c
250 cm
⋅
L1
:=
Pr
ę
t 1
a) Macierze sztywno
ś
ci pr
ę
tów w układzie lokalnym
Zadanie 4
Ke8
0
0
0
0
0
1.189
10
3
×
0
1.189
−
10
3
×
0
0
0
0
0
1.189
−
10
3
×
0
1.189
10
3
×
kN
cm
=
Ke8
E A3
⋅
L8
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
1
:=
c
0
:=
Pr
ę
t 8
Ke7
374.35
449.221
−
374.35
−
449.221
449.221
−
539.065
449.221
539.065
−
374.35
−
449.221
374.35
449.221
−
449.221
539.065
−
449.221
−
539.065
kN
cm
=
Ke7
E A3
⋅
L7
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
300cm
L7
:=
c
250
−
cm
L7
:=
Pr
ę
t 7
Ke6
295.336
110.751
295.336
−
110.751
−
110.751
41.532
110.751
−
41.532
−
295.336
−
110.751
−
295.336
110.751
110.751
−
41.532
−
110.751
41.532
kN
cm
=
Ke6
E A1
⋅
L6
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
150cm
L6
:=
c
400cm
L6
:=
Pr
ę
t 6
Ke5
75.199
225.597
75.199
−
225.597
−
225.597
676.791
225.597
−
676.791
−
75.199
−
225.597
−
75.199
225.597
225.597
−
676.791
−
225.597
676.791
kN
cm
=
Ke5
E A3
⋅
L5
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
450cm
L5
:=
c
150cm
L5
:=
Pr
ę
t 5
K33
sb Ke2 3
,
4
,
3
,
4
,
(
)
sb Ke3 1
,
2
,
1
,
2
,
(
)
+
sb Ke5 1
,
2
,
1
,
2
,
(
)
+
sb Ke6 1
,
2
,
1
,
2
,
(
)
+
:=
K22
1.505
10
3
×
223.624
223.624
1.216
10
3
×
kN
cm
=
K22
sb Ke1 3
,
4
,
3
,
4
,
(
)
sb Ke3 3
,
4
,
3
,
4
,
(
)
+
sb Ke4 1
,
2
,
1
,
2
,
(
)
+
sb Ke9 3
,
4
,
3
,
4
,
(
)
+
:=
K11
669.687
338.469
338.469
1.77
10
3
×
kN
cm
=
K11
sb Ke1 1
,
2
,
1
,
2
,
(
)
sb Ke2 1
,
2
,
1
,
2
,
(
)
+
sb Ke8 1
,
2
,
1
,
2
,
(
)
+
:=
b) Macierz sztywno
ś
ci kratownicy
Ke11
0
0
0
0
0
1.189
10
3
×
0
1.189
−
10
3
×
0
0
0
0
0
1.189
−
10
3
×
0
1.189
10
3
×
kN
cm
=
Ke11
E A3
⋅
L11
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
1
:=
c
0
:=
Pr
ę
t 11
Ke10
575.64
0
575.64
−
0
0
0
0
0
575.64
−
0
575.64
0
0
0
0
0
kN
cm
=
Ke10
E A2
⋅
L10
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
0
:=
c
1
:=
Pr
ę
t 10
Ke9
575.64
0
575.64
−
0
0
0
0
0
575.64
−
0
575.64
0
0
0
0
0
kN
cm
=
Ke9
E A2
⋅
L9
c
2
c s
⋅
c
2
−
c
−
s
⋅
c s
⋅
s
2
c
−
s
⋅
s
2
−
c
2
−
c
−
s
⋅
c
2
c s
⋅
c
−
s
⋅
s
2
−
c s
⋅
s
2
⋅
:=
s
0
:=
c
1
:=
Pr
ę
t 9
K24
479.7
−
0
0
0
kN
cm
=
K24
sb Ke4 1
,
2
,
3
,
4
,
(
)
:=
K23
75.199
−
225.597
225.597
676.791
−
kN
cm
=
K23
sb Ke3 1
,
2
,
3
,
4
,
(
)
:=
K17
0
0
0
0
kN
cm
=
K17
0
0
0
0
kN
cm
⋅
:=
K16
0
0
0
1.189
−
10
3
×
kN
cm
=
K16
sb Ke8 1
,
2
,
3
,
4
,
(
)
:=
K15
0
0
0
0
kN
cm
=
K15
0
0
0
0
kN
cm
⋅
:=
K14
0
0
0
0
kN
cm
=
K14
0
0
0
0
kN
cm
⋅
:=
K13
295.336
−
110.751
110.751
41.532
−
kN
cm
=
K13
sb Ke2 1
,
2
,
3
,
4
,
(
)
:=
K12
374.35
−
449.221
−
449.221
−
539.065
−
kN
cm
=
K12
sb Ke1 1
,
2
,
3
,
4
,
(
)
:=
K77
575.64
0
0
1.189
10
3
×
kN
cm
=
K77
sb Ke10 3
,
4
,
3
,
4
,
(
)
sb Ke11 3
,
4
,
3
,
4
,
(
)
+
:=
K66
575.64
0
0
1.189
10
3
×
kN
cm
=
K66
sb Ke8 3
,
4
,
3
,
4
,
(
)
sb Ke9 1
,
2
,
1
,
2
,
(
)
+
:=
K55
669.687
338.469
−
338.469
−
1.77
10
3
×
kN
cm
=
K55
sb Ke6 3
,
4
,
3
,
4
,
(
)
sb Ke7 1
,
2
,
1
,
2
,
(
)
+
sb Ke11 1
,
2
,
1
,
2
,
(
)
+
:=
K44
1.505
10
3
×
223.624
−
223.624
−
1.216
10
3
×
kN
cm
=
K44
sb Ke4 3
,
4
,
3
,
4
,
(
)
sb Ke5 3
,
4
,
3
,
4
,
(
)
+
sb Ke7 3
,
4
,
3
,
4
,
(
)
+
sb Ke10 1
,
2
,
1
,
2
,
(
)
+
:=
K33
741.07
1.863
10
14
−
×
1.863
10
14
−
×
1.437
10
3
×
kN
cm
=
K67
0
0
0
0
kN
cm
=
K67
0
0
0
0
kN
cm
⋅
:=
K57
0
0
0
1.189
−
10
3
×
kN
cm
=
K57
sb Ke11 1
,
2
,
3
,
4
,
(
)
:=
K56
0
0
0
0
kN
cm
=
K56
0
0
0
0
kN
cm
⋅
:=
K47
575.64
−
0
0
0
kN
cm
=
K47
sb Ke10 3
,
4
,
1
,
2
,
(
)
:=
K46
0
0
0
0
kN
cm
=
K46
0
0
0
0
kN
cm
⋅
:=
K45
374.35
−
449.221
449.221
539.065
−
kN
cm
=
K45
sb Ke7 1
,
2
,
3
,
4
,
(
)
:=
K37
0
0
0
0
kN
cm
=
K37
0
0
0
0
kN
cm
⋅
:=
K36
0
0
0
0
kN
cm
=
K36
0
0
0
0
kN
cm
⋅
:=
K35
295.336
−
110.751
−
110.751
−
41.532
−
kN
cm
=
K35
sb Ke6 3
,
4
,
1
,
2
,
(
)
:=
K34
75.199
−
225.597
−
225.597
−
676.791
−
kN
cm
=
K34
sb Ke5 3
,
4
,
1
,
2
,
(
)
:=
K27
0
0
0
0
kN
cm
=
K27
0
0
0
0
kN
cm
⋅
:=
K26
575.64
−
0
0
0
kN
cm
=
K26
sb Ke9 1
,
2
,
3
,
4
,
(
)
:=
K25
0
0
0
0
kN
cm
=
K25
0
0
0
0
kN
cm
⋅
:=