background image

1

1

Small-Scale Biomass-Fired CHP System

Dr. Hao Liu*, Prof. Saffa Rif1fat 

and Dr. Guoquan Qiu

ERA-NET Bioenergy Conference @Berlin, Germany

2

PROJECT CONSORTIUM,

FUNDING AND PLANS

3

Project Consortium

• Academic Partners

– University of Nottingham, UK
– University of Duisburg – Essen, Germany

• Industrial partners

– Renewable Energy Suppliers Ltd (RES), UK
– Nottinghamshire County Council, UK
– Barnsley Metropolitan Borough Council, UK
– Gesellschaft fur Motoren und Kraftanlage 

(GMK), Germany

4

Project Funding (1)

• Funding Organisations

– Engineering and Physics Science 

Research Council (EPSRC), UK

– FNR - Fachagentur Nachwachsende

Rohstoffe e.V. Agency of Renewable 
Resources 
, Germany

background image

2

5

Project Funding (2)

• Financial Summary

– Overall cost: €355k
– Funding for University of Nottingham:€194k
– Funding for University of Duisburg – Essen: 

€112k

• Project Duration

– 17 months
– Starting/Completion Dates:

• Nottingham 1 Jan 2007 – 31 Oct 2008
• Essen 1 Jan 2007 – 31 May 2008 

6

Research

Motivations

Energy

Environment

Economics

Biomass –
A Primary 

Sustainable Energy

Biomass Combustion-

A Carbon Neutral 

Process

Small-Scale 

Biomass-Fired CHP–

Used in domestic and
commercial buildings

7

Research Objectives

To Prove the Applicability of 

Biomass-Powered CHP with ORC

in a Small-scale System of 1 - 10KWe

To Design, Construct and Evaluate the

Small-scale Biomass-Fired CHP System

To Develop a Computer Model for the

Small-Scale  Biomass-Fired CHP system

8

Working Packages

WPs

WP1

CHP Setup

WP3

CHP 

Modelling

WP4

Project

Management

WP2

CHP 

Evaluation

background image

3

9

Working Package 1

CHP Setup

Procurement and

Modification of the

Biomass Boiler and 

Heat Exchangers

Procurement and

Modification of the
ORC Micro-turbine

Installation and

Assembly of the CHP

System Components

10

Working Package 2

CHP 

Evaluation

Preliminary
ORC Micro-

Turbine Test

ORC Working 

Fluids Test 

( HFEs, n-pentane, 

Honeywell 245a-WF)

Electricity 

Efficiency

&

CHP Efficiency

Pollutants 

Emission

(CO, NOx, 

Particulates,

CxHy, etc.)

11

Working Package 3

CHP 

Modelling

Biomass 

Combustion
in the Boiler

ORC Cycle

Thermal Oil 

Cycle

ORC Turbine

Condenser

Evaporator

Chemical 

Reaction

Pollutants

Emission

Heat Transfer 

from the

Combusted  

Gases

12

Working Package 4

Management

Team

University of Duisburg –

Essen

Prof. Dr.-Ing. Ingo Romey

University of Nottingham

Dr. Hao LIU

background image

4

13

1

2

3

4

5

6

7

8

9

1 0 1 1

1 2

1

2

3

1

2

3

4

5

6

7

8

9

1 0 1 1

1 2

1

2

3

M o n th

W o rk P la n ( fo r U o N )

M o n th

P re lim in a ry W o rk &

L ite ra tu re R e v ie w

E q u ip m e n t

P ro c u re m e n t

C H P I n s ta lla tio n

C H P T e s tin g

C H P E v a lu a tio n

Y e a r

2 0 0 8

Y e a r

2 0 0 7

Work Plan for University of Nottingham

14

EXPERIMENTAL TESTS

15

System Characterization

Micro-Turbine 

with ORC

Direct Biomass

Combustion

Heat

Exchanging

Carbon Neutral

Low-Cost 

Investment

High Efficiency

2KWe Biomass CHP

16

25kW biomass boiler in 
University of Nottingham

Biomass Boiler and Fuel

background image

5

17

Micro-Turbine

Alternator

Micro-Turbine & Alternator

18

Alternators

Car Alternator 1

Alternators

Car 

Alternator 2

High Output 

Alternator

19

Performance of Typical Car Alternators

20

Performance of High Output Alternator

background image

6

21

Power Generation Test Rig

22

™

Expansion in the superheating state

™

High enthalpy drop ( i.e., high thermal 
efficiency)                          

™

Acceptable thermal stability

™

Non-toxic

™

No ozone depletion

™

Low global warming potential

Criteria for Selecting ORC Fluids

23

™

HFE7100 – tested & modelled

™

HFE7000 – tested & modelled

™

N-pentane - modelled

Selected ORC Fluids

24

THERMODYNAMIC MODELING OF 

THE ORC-BASED CHP SYSTEM

background image

7

25

‰

Boiler thermal efficiency 

η

boiler

= 85%

‰

Isentropic turbine efficiency 

η

IST 

= 85%

‰

Isentropic working fluid pump efficiency 

η

ISP

=65%

‰

Turbine to alternator electrical conversion 
efficiency 

η

alter 

=

90%

Main Modeling Assumptions

26

A Typical ORC T-S Diagram

27

‰

Organic cycle efficiency:

Calculation Formula

act

act

act

input

output

h

h

h

h

h

h

q

w

act

2

3

1

2

4

3

)

(

)

(

=

=

η

‰

Carnot cycle efficiency:

1

2

1

T

T

carnot

=

η

‰

Electrical efficiency of the CHP:

η

elec

=

η

act 

η

boiler 

η

alter 

28

RESULTS & CONCLUSIONS

background image

8

29

Thermodynamic Modelling Results (1)

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84

10

12

14

16

18

20

22

24

26

28

30

Actua

l O

R

C an

d

 C

ar

no

t cycle

 efficie

ncy, %

T

2

/T

1

 

η

act

 

η

carnot

(T

1

=100

0

C)

 

η

act

 

 

η

carnot

(T

1

=120

0

C)

 

η

act

η

carnot

(T

1

=140

0

C)

HFE 7000

30

Thermodynamic Modelling Results (2)

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84

10

12

14

16

18

20

22

24

26

28

30

Actual

 ORC

 a

nd

 Ca

rno

t cycle

 e

ffici

ency, %

T

2

/T

1

 

η

act

 

η

carnot

(T

1

=100

0

C)

 

η

act

 

 

η

carnot

(T

1

=120

0

C)

 

η

act

η

carnot

(T

1

=140

0

C)

HFE 7100

31

Thermodynamic Modelling Results (3)

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84

7

8

9

10

11

12

13

Ele

ctrica

l efficie

n

cy 

o

f th

e CH

P

 system

, %

T

2

/T

1

HFE7000

 

 

 

HFE7100

 

 

n-pentane

 

 

T

1

=100

0

C (solid)

T

1

=120

0

C (half-solid)

T

1

=140

0

C (hollow)

32

ORC Turbine - Air Test Results (1)

Air Flow Rate (l/min, STP)

Ro

ta

tio

n

Sp

e

e

d

(r

p

m

)

100

200

300

400

500

600

700

800

350

400

450

500

550

600

650

background image

9

33

ORC Turbine - Air Test Results (2)

Air Flow Rate (l/min, STP)

Ai

r

P

re

ss

ur

e

(ba

r)

100

200

300

400

500

600

700

800

2.5

3

3.5

4

4.5

5

5.5

6

34

RPM, Pressure & Flow Rate vs HFE7100 Pumping Rate

5

10

15

20

25

30

35

40

45

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

200

400

600

800

1000

1200

1400

P

res

sure (

bar),

 HFE

 fl

o

w

 rat

e (l/

m

in)

HFE pump setting (%) 

 Turbine inelt pressure (bar)
 HFE7100 flow rate (l/min)

18 Aug 2008

 RP

M

 RPM

35

Turbine Test Data – Energy Balance

0

2

4

6

8

10

12

10

15

20

25

30

35

40

45

HFE7100 pump setting,%

Bo

iler hea

t in

put and hea

t ou

tput,

kW

Heat Input
Heat output from Cond.

36

Power Generation Test Data – V, I (HFE7100)

HFE7100

-2

0

2

4

6

8

10

12

14

16

12:43:12

12:57:36

13:12:00

13:26:24

13:40:48

13:55:12

14:09:36

Time

I,

V

I, Amps
V, volts

background image

10

37

Power Generation Test Data – V, I (HFE7000)

I,V vs Time (HFE7000)

0

2

4

6

8

10

12

14

16

13

:0

4:

00

13

:0

5:

50

13

:0

7:

40

13

:0

9:

30

13

:1

1:

20

13

:1

3:

10

13

:1

5:

00

13

:1

6:

50

13

:1

8:

40

13

:2

0:

30

13

:2

2:

20

13

:2

4:

10

13

:2

6:

00

13

:2

7:

50

13

:2

9:

40

I,

A;

 V,

Vo

lt

I, Amps
V, Volt

38

Power Generation Test Data – Energy Balance

0

1

2

3

4

5

6

7

8

9

10

37

In

put/

O

ut

p

ut

 Energy, 

kW

HFE7100 pump setting, %

 Measured heat Input from boiler
 Measured heat ouput from cond.
 Calculated maximum turbine output

35

39

Power Generation Test Data – Energy Balance

0

10

20

30

40

50

60

70

80

90

37

Ef

fic

ienc

y,

 %

HFE7100 pump setting, %

 Measured/calculated CHP eff.
 Calculated maximum electrical eff. using measued data

35

40

Conclusions (1)

• A biomass-fired CHP with ORC has been 

developed and tested. In total, more than 5000 

hours of operation have been accumulated.

• Successful power generation with the CHP 

system indicates that ORC-based power 

generation can be applied to 1-10 kW

e

biomass-

fired CHP

– Total CHP efficiency of the CHP system is over 80%.

– However, the electrical efficiency of the CHP system 

achieved with experiments is much smaller than 

those predicted by thermodynamic modelling and by 

calculations using experimental data

background image

11

41

Conclusions (2)

• The main components of the developed ORC-

based CHP system need to be optimised:

– Turbine: The isentropic efficiency of the existing 

turbine is in the order of 10-20%

– Alternator: The cut-in speed of all of the tested 

alternators are too high.

– Biomass boiler: The maximum hot water 

temperature needs to be 120 

0

C - 160 

0

C.

– Pumps and heat exchangers: They need to be 

specifically designed for their purposes (e.g. 
evaporator, condenser)

42

An optimised micro-scale biomass-fired 

CHP with ORC can provide the required 

heat and power to its users from a 

renewable source (biomass) with 

acceptable electrical and overall 

efficiencies.

Conclusions (3)