P21 009

background image

9.

(a) The energy that leaves the aluminum as heat has magnitude Q = m

a

c

a

(T

ai

− T

f

), where m

a

is

the mass of the aluminum, c

a

is the specific heat of aluminum, T

ai

is the initial temperature of the

aluminum, and T

f

is the final temperature of the aluminum-water system. The energy that enters

the water as heat has magnitude Q = m

w

c

w

(T

f

− T

wi

), where m

w

is the mass of the water, c

w

is

the specific heat of water, and T

wi

is the initial temperature of the water. The two energies are the

same in magnitude since no energy is lost. Thus,

m

a

c

a

(T

ai

− T

f

) = m

w

c

w

(T

f

− T

wi

)

=

⇒ T

f

=

m

a

c

a

T

ai

+ m

w

c

w

T

wi

m

a

c

a

+ m

w

c

w

.

The specific heat of aluminum is 900 J/kg

·K and the specific heat of water is 4190 J/kg·K. Thus,

T

f

=

(0.200 kg)(900 J/kg

·K)(100

C) + (0.0500 kg)(4190 J/kg

·K)(20

C)

(0.200 kg)(900 J/kg

·K) + (0.0500 kg)(4190 J/kg·K)

=

57.0

C

or

330 K .

(b) Now temperatures must be given in Kelvins: T

ai

= 393 K, T

wi

= 293 K, and T

f

= 330 K. For the

aluminum, dQ = m

a

c

a

dT and the change in entropy is

S

a

=



dQ

T

= m

a

c

a



T

f

T

ai

dT

T

= m

a

c

a

ln

T

f

T

ai

=

(0.200 kg)(900 J/kg

·K) ln



330 K

373 K



=

22.1 J/K .

(c) The entropy change for the water is

S

w

=



dQ

T

= m

w

c

w



T

f

T

wi

dT

T

= m

w

c

w

ln

T

f

T

wi

=

(0.0500 kg)(4190 J/kg

·K) ln



330 K

293 K



= +24.9 J/K .

(d) The change in the total entropy of the aluminum-water system is ∆S = ∆S

a

+ ∆S

w

=

22.1 J/K+

24.9 J/K = +2.8 J/K.


Document Outline


Wyszukiwarka

Podobne podstrony:
009 Dystrybucja
009 Dystrybucja 3id 2475 ppt
ep 12 009
p13 009
P31 009
P21 058
P21 067
P21 052
p36 009
009 szkolo
P21 027
p11 009
p07 009
P21 057
Mammaryla (odc 009) Wieniec z ciasta na focaccię z farszem
009 Z G B
p10 009

więcej podobnych podstron