p-METHOXYBENZALDEHYDE
1
p-Methoxybenzaldehyde
MeO
CHO
[123-11-5]
C
8
H
8
O
2
(MW 136.16)
InChI = 1/C8H8O2/c1-10-8-4-2-7(6-9)3-5-8/h2-6H,1H3
InChIKey = ZRSNZINYAWTAHE-UHFFFAOYAA
(protection of diols as the versatile p-methoxybenzylidene acetal;
protection of dithiols,
1
amines, hydroxy amines,
2
and diamines
3
)
Alternate Name: p
-anisaldehyde.
Physical Data:
bp 248
◦
C; d 1.119 g cm
−3
.
Form Supplied in:
clear liquid; widely available.
Protection of Diols.
p
-Methoxybenzylidene acetals are
easily prepared from diols by reaction of the aldehyde
in the presence of an acid catalyst such as Hydrogen
Chloride
4
,
5
or Zinc Chloride
6
. They can also be prepared
from the diol and p-MeOC
6
H
4
CH
2
OMe by oxidation with 2,3-
Dichloro-5,6-dicyano-1,4-benzoquinone (CH
2
Cl
2
, rt, 30 min,
49–82% yield)
7
or by acid-catalyzed acetal exchange with p-
MeOC
6
H
4
CH(OMe)
2
.
8
The p-methoxybenzylidene acetal can be
prepared by DDQ oxidation of a p-methoxybenzyl group that has a
neighboring hydroxy function.
9
This methodology has been used
to advantage in a number of syntheses.
10
–
12
Reaction of an epox-
ide with p-methoxybenzaldehyde in the presence of Tin(IV) Chlo-
ride results in the formation of the acetal without prior conversion
to the diol (eq 1).
13
MeO
CHO
CHO
O
MeO
O
O
CHO
+
3A MS, SnCl
4
(1)
CH
2
Cl
2
, –78 °C
The advantages of the p-methoxybenzylidene acetal are that
acid-catalyzed hydrolysis (80% AcOH, 25
◦
C, 10 h, 100% yield) is
10 times faster than that of the benzylidene group;
5
it is cleaved ox-
idatively with Cerium(IV) Ammonium Nitrate (MeCN, H
2
O)
14
and it is relatively stable to Na/NH
3
.
15
As with the benzylidene group, a variety of methods have been
developed to effect cleavage of one of the two C–O bonds in this
acetal. Cleavage with Diisobutylaluminum Hydride
10
,
16
,
17
has
proven to be quite selective and is controlled by both electronic
and steric factors. Oxidative cleavage with DDQ
7
results in the
formation of a mixture of the two possible monobenzoates. In the
carbohydrate field, selective cleavage to give either the more- or
less-substituted derivative is possible with the proper choice of
reagents (eq 2).
4
–
19
Use of LiAlH
4
/AlCl
3
,
12
BH
3
·NMe
3
/AlCl
3
,
4
BH
3
·THF, heat,
20
or NaBH
3
CN/TMSCl/MeCN
11
results in cleav-
age at the less-hindered side of the acetal, whereas NaBH
3
CN/
HCl,
4
or NaBH
3
CN/TFA/DMF
11
result in formation of an MPM
ether at the less-hindered alcohol.
NaBH
3
CN
TFA, DMF
O
MeO
BnO
OH
OBn
OMPM
O
MeO
BnO
O
OBn
O
Mp
NaBH
3
CN
TMSCl
MeCN
O
MeO
BnO
OMPM
OBn
OH
(2)
Protection of Amines.
p
-Methoxybenzaldehyde has been
used to protect an amine as the MPM derivative by reductive
amination with Sodium Borohydride.
21
It is also used to prepare
imine derivatives of glucosamines which are used in glycoside
couplings.
22
1.
Kishi, Y.; Fukuyama, T.; Nakatusuka, S., J. Am. Chem. Soc. 1973, 95,
6490.
2.
Witkop, B.; Patrick, J. P.; Kissman, H. M., Chem. Ber. 1952, 85,
949.
3.
Weidenhagen, R.; Train, G.; Wegner, H.; Nordstrom, L., Chem. Ber.
1936, 75, 1936.
4.
Serfontain, W. J.; Lourens, G. J.; De Waal, H. L., J. Med. Chem. 1965,
8
, 889.
5.
Smith, M.; Rammler, D. H.; Goldberg, I. H.; Khorana, H. G., J. Am.
Chem. Soc. 1962
, 84, 430.
6.
Hanessian, S.; Kloss, J.; Sugawara, T. In Trends in Synthetic
Carbohydrate Chemistry
; Horton, D.; Hawkins, L. D.; McGarvey, G.
J., Eds.; ACS Symposium Series 386; American Chemical Society;
Washington, 1989; p 64.
7.
Oikawa, Y.; Nishi, T.; Yonemitsu, O., Tetrahedron Lett. 1983, 24,
4037.
8.
Kloosterman, M.; Slaghek, T.; Hermans, J. P. G.; Van Boom, J. H., Recl.
Trav. Chim. Pays-Bas 1984
, 103, 335.
9.
Oikawa, Y.; Yoshioka, T.; Yonemitsu, O., Tetrahedron Lett. 1982, 23,
889.
10.
Sviridov, A. F.; Ermolenko, M. S.; Yaskunsky, D. V.; Borodkin, V. S.;
Kochetkov, N. K., Tetrahedron Lett. 1987, 28, 3835.
11.
Yadav, J. S.; Chander, M. C.; Joshi, B. V., Tetrahedron Lett. 1988, 29,
2737.
12.
(a) Jones, A. B.; Yamaguchi, M.; Patten, A.; Danishefsky, S. J.; Ragan, J.
A.; Smith, D. B.; Schreiber, S. L., J. Org. Chem. 1989, 54, 17. (b) Smith,
A. B., III; Hale, K. J.; Laakso, L. M.; Chen, K.; Riera, A., Tetrahedron
Lett. 1989
, 30, 6963.
13.
Sturmer, R., Liebigs Ann. Chem. 1991, 311.
14.
Johansson, R.; Samuelsson, B., J. Chem. Soc., Chem. Commun. 1984,
201.
15.
Tone, H.; Hikota, M.; Hamada, T.; Nishi, T.; Oikawa, Y.; Yonemitsu, O.,
Chem. Pharm. Bull. 1989
, 37, 1155.
16.
Evans, D. A.; Kalder, S. W.; Jones, T. K.; Clardy, J.; Stout, T. S., J. Am.
Chem. Soc. 1990
, 112, 7001.
17.
Aicher, T. O.; Buszck, K. R.; Fang, F. G.; Forsyth, C. J.;
Jung, S. H.; Kishi, Y.; Scola, P. M., Tetrahedron Lett. 1992, 33,
1549.
Avoid Skin Contact with All Reagents
2
p-METHOXYBENZALDEHYDE
18.
(a) Johansson, R.; Samuelsson, B., J. Chem. Soc., Perkin Trans. 1 1984,
2371. (b) Garegg, P. J.; Hultberg, H.; Wallin, S., Carbohydr. Res. 1982,
108
, 97.
19.
Joniak, D.; Kôsíková, B.; Kosáková, L., Collect. Czech. Chem. Commun.
1978, 43, 769.
20.
Tsuri, T.; Kamata, S., Tetrahedron Lett. 1985, 26, 5195.
21.
Smith, A. B.; III, Rano, T. A.; Chida, N.; Sulikowski, G. A., J. Org.
Chem. 1990
, 55, 1136.
22.
(a) Lucas, R. A.; Dickel, D. F.; Dziemian, R. L.; Ceglowski, M. J.; Hensle,
B. L.; MacPhillamy, H. B., J. Am. Chem. Soc. 1960, 82, 5688. (b) Mootoo,
D. R.; Fraser-Reid, B., Tetrahedron Lett. 1989, 30, 2579. (c) Bergmann,
M.; Zervas, L., Chem. Ber. 1931, 64, 975.
Peter G. M. Wuts
The Upjohn Company, Kalamazoo, MI, USA
A list of General Abbreviations appears on the front Endpapers