3U]\NáDG5DPDÄWUyMSU]HJXERZD´
:\]QDF]\üUHDNFMHZUDPLHRSRGDQ\PVFKHPDFLHVWDW\F]Q\P
q
l
l
l
5R]ZL]DQLH
8ZDOQLDP\XNáDG]ZL ]yZZSURZDG]DMFRGSRZLDGDMFHLPUHDNFMH
q
H
A
H
B
V
A
V
B
1
A
B
3U]HGVWDZLRQ\ XNáDG VLá PXVL VSHáQLDü ZDUXQNL UyZQRZDJL D LORü QLHZLDGRP\FK
VNáDGRZ\FK UHDNFML Z\QRVL =DWHP WH UyZQDQLD UyZQRZDJL QLH Z\VWDUF] GR Z\]QDF]HQLD
ZV]\VWNLFK QLHZLDGRP\FK ']L NL ZVSyOQHM OLQLL G]LDáDQLD UHDNFML +
A
i H
B
PR*OLZH MHVW
REOLF]HQLH ZDUWRFL VNáDGRZ\FK SLRQRZ\FK UHDNFML 9
A
i V
B
3RQLHZD* Z SXQNFLH $
SU]HFLQDMVL OLQLHG]LDáDQLDWU]HFK]F]WHUHFKQLHZLDGRP\FKUHDNFMLZ\NRU]\VWDP\UyZQDQLH
równowagi
M
iA
i
∑
=
0 do obliczenia reakcji V
B
(wybór tego bieguna eliminuje z równania
SR]RVWDáH QLHZLDGRPH 3R ]DVWSLHQLX REFL*HQLD FLJáHJR MHJR Z\SDGNRZ : R ZDUWRFL
równej
TO SU]\áR*RQ Z URGNX RGFLQND REFL*HQLD UyZQDQLH WR GOD QDV]HJR ]DGDQLD
SU]\MPXMHSRVWDü9
B
2l - W l/2
LVWG
V
B
= ql/4.
Obliczenie V
A
PR*HP\ SU]HSURZDG]Lü DQDORJLF]QLH Z\NRU]\VWXMF UyZQDQLH UyZQRZDJL
M
iB
i
∑
=
0
3U]\MPXMHRQRSRVWDü9
A
2l - W l/2
VNG
V
A
= -ql/4 (znak minus oznacza,
*HUHDNFMDWDPD]ZURWSU]HFLZQ\GR]DáR*RQHJRQDU\VXQNX
Trzecie równanie równowagi (np.
P
ix
i
∑
=
0
SR]ZDOD MHG\QLH XVWDOLü ]DOH*QRü PL G]\
reakcjami H
A
i H
B
.
3R SRG]LHOHQLX XNáDGX Z SU]HJXELH U\VXQHN SRQL*HM RWU]\PXMHP\ GZD XNáDG\ VLá ]
nowymi niewiadomymi V
1
i H
1
RGG]LDá\ZDQLDPLZW\PSRáF]HQLX=\VNXMHP\GRGDWNRZR
UyZQDQLDUyZQRZDJL NWyUH PXV] E\ü VSHáQLRQH ]DUyZQR SU]H] XNáDG VLá 9
A
, H
A
,V
1
, H
1
i
:OHZDVWURQDSRG]LDáXLSU]H]XNáDG9
B
,H
B
V
1
i H
1
SUDZDVWURQDSRG]LDáX
2
W
H
A
H
B
ql/4
ql/4
1
A
B
V
1
V
1
H
1
H
1
0DMFQDFHOXZ\]QDF]HQLHUHDNFML+
A
i H
B
Z\NRU]\VWDP\W\ONRWH]UyZQDUyZQRZDJLZ
NWyU\FKQLHZ\VWSLQRZHQLHZLDGRPH9
1
i H
1
3XQNWHPJG]LHSU]HFLQDMVL OLQLHG]LDáDQLD
W\FK UHDNFML MHVW SU]HJXE SU]\MPLMP\ ZL F MDNR ELHJXQ REOLF]DQLD PRPHQWyZ WHQ SXQNW
=DWHPUyZQDQLHUyZQRZDJLGODF] FLSUDZHMSU]\MPLHSRVWDü
M
i
prawa
i
1
0
∑
=
⇒
V
B
l - H
B
l
VNG
H
B
=ql/4,
DGODF] FLOHZHM
M
i
lewa
i
1
0
∑
=
⇒
ql/4 l + H
A
l + Wl/2
VNG
H
A
= - 3/4q.
5R]ZL]DQLHSU]HGVWDZLDVL QDVW SXMFR
q
3/4ql
ql/4
ql/4
ql/4
C
'RVSUDZG]HQLDSRSUDZQRFLREOLF]HPR*HE\ü X*\WH QLHZ\NRU]\VWDQH ZF]HQLHMUyZQDQLH
UyZQRZDJLGODFDáHJRXNáDGX3R]RVWDá\UyZQDQLD
P
i
i
η
∑
=
0
R
η
QLHPR*HE\üSURVWRSDGáD
do linii AB) lub
M
iC
i
∑
=
0
SXQNW&QLHPR*HOH*HüQDOLQLL$%
6SUDZG]LP\F]\REOLF]RQHZDUWRFLUHDNFMLVSHáQLDMUyZQDQLHUyZQRZDJLQS
M
iC
i
∑
=
0 .
M
iC
i
∑
= V
A
2l -H
A
l- H
B
l+Wl/2 = ql/4 2l – 3/4ql l - ql/4 l +ql l/2= 0.
5R]ZL]DQLHWHJR]DGDQLDPR*HSU]HELHJDüQDZLHOHVSRVREyZ,VWRWQHMHVWVSRVWU]H*HQLH*H
F] ü SUDZD XNáDGX QLH MHVW REFL*RQD 1D W F] ü G]LDáDM ZL F W\ONR GZLH UHDNFMH Z
SU]HJXEDFK % L D WR R]QDF]D *H PXV] RQH PLHü ZVSyOQ\ NLHUXQHN ZDUXQHN UyZQRZDJL
GZyFKVLá
3
R
B
1
B
R
1
q
H
A
V
A
A
B
1
R
B
x
d =
√
2l
:\NRU]\VWXMF W LQIRUPDFM R NLHUXQNX UHDNFML Z SRGSRU]H % X]\VNXMHP\ XNáDG VLá
SR]ZDODMF\ REOLF]\ü ZDUWRFL UHDNFML ] WU]HFK ZDUXQNyZ UyZQRZDJL FDáHJR XNáDGX
=DSLVXMFNROHMQRUyZQDQLD
M
iA
i
∑
=
0 ,
M
iB
i
∑
=
0 ,
0
P
i
ix
=
∑
uzyskujemy R
B
√
2 l – ql l/2 = 0,
-V
A
2l –ql l/2 = 0,
H
A
+ ql - R
B
√
2/2 = 0
LREOLF]DP\ZDUWRFL
R
B
=
√√
2/4 ql, V
A
= - ql/4, H
A
= - 3/4ql.
àDWZR VSUDZG]Lü *H REOLF]RQD UHDNFMD 5
B
MHVW Z\SDGNRZ REOLF]RQ\FK ZF]HQLHM
VNáDGRZ\FK9
B
i H
B
.
=DGDQLHGRSU]HP\OHQLD
-DN Z\NRU]\VWDü UR]ZL]DQLH SRSU]HGQLHJR ]DGDQLD GR Z\]QDF]HQLD UHDNFML Z QDVW SXMFHM
ramie?
q
l
l
l
l