3U]\NáDG5DPDÄWUyMSU]HJXERZD´
:\]QDF]\üUHDNFMHZUDPLHRSRGDQ\PVFKHPDFLHVWDW\F]Q\P
q
l
l
l
5R]ZL]DQLH
8ZDOQLDP\XNáDG]ZL ]yZZSURZDG]DMFRGSRZLDGDMFHLPUHDNFMH
q
1
HB
HA
A
B
V
V
A
B
3U]HGVWDZLRQ\ XNáDG VLá PXVL VSHáQLDü ZDUXQNL UyZQRZDJL D LORü QLHZLDGRP\FK
VNáDGRZ\FK UHDNFML Z\QRVL =DWHP WH UyZQDQLD UyZQRZDJL QLH Z\VWDUF] GR Z\]QDF]HQLD
ZV]\VWNLFK QLHZLDGRP\FK ']L NL ZVSyOQHM OLQLL G]LDáDQLD UHDNFML +A i HB PR*OLZH MHVW
REOLF]HQLH ZDUWRFL VNáDGRZ\FK SLRQRZ\FK UHDNFML 9A i VB 3RQLHZD* Z SXQNFLH $
SU]HFLQDMVL OLQLHG]LDáDQLDWU]HFK]F]WHUHFKQLHZLDGRP\FKUHDNFMLZ\NRU]\VWDP\UyZQDQLH
równowagi
M
∑
= 0 do obliczenia reakcji V
iA
B (wybór tego bieguna eliminuje z równania i
SR]RVWDáH QLHZLDGRPH 3R ]DVWSLHQLX REFL*HQLD FLJáHJR MHJR Z\SDGNRZ : R ZDUWRFL
równej TO SU]\áR*RQ Z URGNX RGFLQND REFL*HQLD UyZQDQLH WR GOD QDV]HJR ]DGDQLD
SU]\MPXMHSRVWDü9B 2 l - W l/2 LVWGVB= ql/4.
Obliczenie VA PR*HP\ SU]HSURZDG]Lü DQDORJLF]QLH Z\NRU]\VWXMF UyZQDQLH UyZQRZDJL
M
∑
= 0 3U]\MPXMHRQRSRVWDü9
iB
A 2 l - W l/2 VNGVA= -ql/4 (znak minus oznacza, i
*HUHDNFMDWDPD]ZURWSU]HFLZQ\GR]DáR*RQHJRQDU\VXQNX
Trzecie równanie równowagi (np.
P
∑ = 0 SR]ZDOD MHG\QLH XVWDOLü ]DOH*QRü PL G]\
ix
i
reakcjami HA i HB.
3R SRG]LHOHQLX XNáDGX Z SU]HJXELH U\VXQHN SRQL*HM RWU]\PXMHP\ GZD XNáDG\ VLá ]
nowymi niewiadomymi V1 i H1 RGG]LDá\ZDQLDPLZW\PSRáF]HQLX=\VNXMHP\GRGDWNRZR
UyZQDQLDUyZQRZDJL NWyUH PXV] E\ü VSHáQLRQH ]DUyZQR SU]H] XNáDG VLá 9A , HA ,V1 , H1 i
:OHZDVWURQDSRG]LDáXLSU]H]XNáDG9B ,HB V1 i H1 SUDZDVWURQDSRG]LDáX
1
1
H1
H
V
1
1
W
HA
H
A
B
B
ql/4
ql/4
0DMFQDFHOXZ\]QDF]HQLHUHDNFML+A i HBZ\NRU]\VWDP\W\ONRWH]UyZQDUyZQRZDJLZ
NWyU\FKQLHZ\VWSLQRZHQLHZLDGRPH91 i H13XQNWHPJG]LHSU]HFLQDMVL OLQLHG]LDáDQLD
W\FK UHDNFML MHVW SU]HJXE SU]\MPLMP\ ZL F MDNR ELHJXQ REOLF]DQLD PRPHQWyZ WHQ SXQNW
=DWHPUyZQDQLHUyZQRZDJLGODF] FLSUDZHMSU]\MPLHSRVWDü
M prawa
0
∑
= ⇒ V
i1
B l - HB l VNGHB=ql/4, i
DGODF] FLOHZHM
M lewa
0
∑
= ⇒ ql/4 l + H
i1
A l + Wl/2 VNGHA= - 3/4q.
i
5R]ZL]DQLHSU]HGVWDZLDVL QDVW SXMFR
q
C
ql/4
3/4ql
ql/4
ql/4
'RVSUDZG]HQLDSRSUDZQRFLREOLF]HPR*HE\ü X*\WH QLHZ\NRU]\VWDQH ZF]HQLHMUyZQDQLH
UyZQRZDJLGODFDáHJRXNáDGX3R]RVWDá\UyZQDQLD
P
∑ = 0RηQLHPR*HE\üSURVWRSDGáD
iη
i
do linii AB) lub
M
∑
= 0 SXQNW&QLHPR*HOH*HüQDOLQLL$%
iC
i
6SUDZG]LP\F]\REOLF]RQHZDUWRFLUHDNFMLVSHáQLDMUyZQDQLHUyZQRZDJLQS
M
∑
= 0 .
iC
i
M
∑ = V
iC
A 2 l - HA l- HB l+Wl/2 = ql/4 2 l – 3/4ql l - ql/4 l +ql l/2= 0.
i
5R]ZL]DQLHWHJR]DGDQLDPR*HSU]HELHJDüQDZLHOHVSRVREyZ,VWRWQHMHVWVSRVWU]H*HQLH*H
F] ü SUDZD XNáDGX QLH MHVW REFL*RQD 1D W F] ü G]LDáDM ZL F W\ONR GZLH UHDNFMH Z
SU]HJXEDFK % L D WR R]QDF]D *H PXV] RQH PLHü ZVSyOQ\ NLHUXQHN ZDUXQHN UyZQRZDJL
GZyFKVLá
2
R1
q
1
1
d = √ 2l
B
B
A
HA
V
R
A
RB
B
x
:\NRU]\VWXMF W LQIRUPDFM R NLHUXQNX UHDNFML Z SRGSRU]H % X]\VNXMHP\ XNáDG VLá SR]ZDODMF\ REOLF]\ü ZDUWRFL UHDNFML ] WU]HFK ZDUXQNyZ UyZQRZDJL FDáHJR XNáDGX
=DSLVXMFNROHMQRUyZQDQLD
M
∑
= 0 ,
M
∑
= 0 ,
P
∑ = 0
iA
iB
ix
i
i
i
uzyskujemy R √
√
B 2 l – ql l/2 = 0,
-VA 2 l –ql l/2 = 0, HA + ql - RB 2/2 = 0
LREOLF]DP\ZDUWRFLRB = √2/4 ql, VA = - ql/4, HA = - 3/4ql.
àDWZR VSUDZG]Lü *H REOLF]RQD UHDNFMD 5B MHVW Z\SDGNRZ REOLF]RQ\FK ZF]HQLHM
VNáDGRZ\FK9B i HB .
=DGDQLHGRSU]HP\OHQLD
-DN Z\NRU]\VWDü UR]ZL]DQLH SRSU]HGQLHJR ]DGDQLD GR Z\]QDF]HQLD UHDNFML Z QDVW SXMFHM
ramie?
q
l
l
l
l
3