p44 011

background image

11.

(a) If X represents the unknown fragment, then the reaction can be written

235

92

U +

1
0

n

83
32

Ge +

A
Z

X

where A is the mass number and Z is the atomic number of the fragment. Conservation of charge
yields 92+0 = 32+Z, so Z = 60. Conservation of mass number yields 235+1 = 83+A, so A = 153.
Looking in Appendix F or G for nuclides with Z = 60, we find that the unknown fragment is

153

60

Nd.

(b) We neglect the small kinetic energyand momentum carried bythe neutron that triggers the fission

event. Then, Q = K

Ge

+ K

Nd

, where K

Ge

is the kinetic energyof the germanium nucleus and K

Nd

is the kinetic energy of the neodymium nucleus. Conservation of momentum yields 

p

Ge

+ 

p

Nd

=

0. Now, we can write the classical formula for kinetic energyin terms of the magnitude of the
momentum vector:

K =

1

2

mv

2

=

p

2

2m

which implies that K

Nd

= (m

Ge

/m

Nd

)K

Ge

. Thus, the energyequation becomes

Q = K

Ge

+

M

Ge

M

Nd

K

Ge

=

M

Nd

+ M

Ge

M

Nd

K

Ge

and

K

Ge

=

M

Nd

M

Nd

+ M

Ge

Q =

153 u

153 u + 83 u

(170 MeV) = 110 MeV .

Similarly,

K

Nd

=

M

Ge

M

Nd

+ M

Ge

Q =

83 u

153 u + 83 u

(170 MeV) = 60 MeV .

(c) The initial speed of the germanium nucleus is

v

Ge

=



2K

Ge

M

Ge

=



2(110

× 10

6

eV)(1.60

× 10

19

J/eV)

(83 u)(1.661

× 10

27

kg/u)

= 1.60

× 10

7

m/s .

The initial speed of the neodymium nucleus is

v

Nd

=



2K

Nd

M

Nd

=



2(60

× 10

6

eV)(1.60

× 10

19

J/eV)

(153 u)(1.661

× 10

27

kg/u)

= 8.69

× 10

6

m/s .


Document Outline


Wyszukiwarka

Podobne podstrony:
011 problemy w praktyceid 3165 ppt
p44 054
bądźże pozdrowiona, (Finale 2006c [B 271d 237 277e pozdrowiona 011 R 363g F 4 MUS])
p44 033
BTChwyklad 011
p44 004
p44 046
011
011
P44 3
p08 011
chf tch I cr 011
011 Antygon J Axer
P22 011
p44 022
bądźże pozdrowiona, (Finale 2006c [B 271d 237 277e pozdrowiona 011 R 363g F 3 MUS])
011
p35 011

więcej podobnych podstron