DALMIERZE ELEKTRONICZNE 2003

background image

DALMIERZE

ELEKTRONICZNE

background image

Zasada elektronicznych

pomiarów odległości

Pomiar wzajemnej odległości D dwóch punktów, A i B, dalmierzem
elektronicznym sprowadza się w zasadzie do pomierzenia czasu , w ciągu

którego sygnał pomiarowy emitowany z punktu A przebywa drogę 2D po
torze: ,,początek" A —,,koniec" B — ,,początek" A mierzonego odcinka.
Przyjmując, ze sygnał ten rozchodzi się prostoliniowo oraz ze średnią
prędkość tegoż sygnału w danym ośrodku wynosi v, przedstawiamy mierzoną
odległość jako funkcją liniową czasu  daną wzorem

background image

Najprostszy układ dalmierza realizującego tę zasadę przedstawiono

na rysunku. Aparatura pomiarowa ustawiona nad punktem A

obejmuje

nadajnik

N

i

odbiornik O sygnałów oraz miernik czasu F. W punkcie B znajduje się

aparatura

pomocnicza R, której zadaniem jest retransmisja — w kierunku

odbiornika

O

sygnałów przychodzących tu od nadajnika N. Dla pewnej grupy

dalmierzy elektronicznych (radar) odbicie sygnałów następuje od

powierzchni

namierzanego

obiektu. W najprostszym przypadku pomiar czasu  polega na

zarejestrowaniu na mierniku elektronicznym F chwili wyjścia t

w

sygnału

pomiarowego

z

nadajnika

N

i

chwili powrotu t

p

tegoż sygnału — po jego retransmisji w B — do

odbiornika

O.

Wartość  równa jest wtedy różnicy zarejestrowanych wskazań

miernika czasu F, a mianowicie:

w

p

t

t

background image

W rzeczywistości, sam proces pomiaru czasu  jest bardziej złożony i w

rożnych
dalmierzach realizowany jest odmiennymi metodami. Trzeba tu również
podkreślić, że w znacznej większości dalmierzy elektronicznych
urządzenia odczytowe wyskalowane są w jednostkach długości (przy
założeniu pewnej przeciętnej wartości v), a nie w jednostkach czasu;
wielkość  występuje wiec w odczytach w sposób pośredni, jej związek zaś

z jednostkami długości wynika z wzoru podstawowego. Aby było możliwe
wyznaczenie odległości D na podstawie pomierzonego czasu , musi być

znana — z odpowiednia dokładnością — średnia prędkość v sygnału
pomiarowego w danym ośrodku (np. w powietrzu, w wodzie). Wartość v
zależy jednak od rodzaju energii przenoszącej sygnał i od właściwości
fizycznych samego ośrodka znajdującego się na trasie przelotu tegoż
sygnału.

Prędkość sygnałów pomiarowych przenoszonych na falach

elektromagnetycznych w powietrzu wyrażana jest zwykle wzorem
ogólnym

n

c

v

gdzie:
c

oznacza

prędkość

rozchodzenia

się

(propagacji)

fal

elektromagnetycznych w próżni,
n — współczynnik załamania w powietrzu fali elektromagnetycznej

background image

Współczynnik załamania n jest wielkością wyrażającą wpływ warunków

fizycznych powietrza na prędkość sygnału elektromagnetycznego. Znane
są wystarczająco dokładne wzory empiryczne przedstawiające zależność
funkcyjną wielkości n od parametrów charakteryzujących właściwości
dyspersyjne powietrza (temperatura t, ciśnienie p i wilgotność e) i od
składu widmowego (spektralnego) sygnału. Ogólnie można więc
przyjmować

)

,

e

,

p

,

t

(

f

n

w

Mając pomierzone wartości wspomnianych parametrów (ze względu na
dużą
fluktuacje czynników atmosferycznych odnośne pomiary musza być
realizowane
równocześnie z pomiarem czasu ), można według tych wzorów obliczyć

wartość współczynnika n z dokładnością rzędu 10

-7

.

background image

Uwzględniając związek c z n przedstawimy wzór podstawowy w następującej
postaci:

n

c

2

1

D

Jak z powyższego wynika, na pomiar odległości składają się w zasadzie dwie

odrębne operacje pomiarowe, a mianowicie:

— pomiar czasu  przejścia przez sygnał elektromagnetyczny drogi 2D,

pomiary parametrów meteorologicznych niezbędnych do wyznaczania

wartości n

.

W związku z tym dokładność pomiaru odległości D zależy z jednej strony od

układów elektronicznych dalmierza realizujących pomiar czasu , z drugiej zaś

strony od precyzji i niezawodności określenia faktycznych warunków
atmosferycznych panujących wzdłuż toru przejścia sygnału pomiarowego.
Dokładność tę można ogólnie scharakteryzować błędem średnim m

D

funkcji

zmiennych niezależnych: c, n, r

2

2

2

)

(

)

(

)

(

m

n

m

c

m

D

m

n

c

D

background image

gdzie
m

e

błąd średni wyznaczenia prędkości c,

m

n

błąd średni współczynnika n,

m

błąd średni wielkości pomierzonej .

Ze względu na małą wartość m

c

. wyrażenie m

c

/c może być pominięte, w związku

z czym wzór powyższy przyjmuje następująca postać:

2

2

)

(

)

(

n

m

m

D

m

n

D

lub

2

2

)

(

)

(

n

m

m

D

m

n

D

Wielkości m

wyraża tu sumaryczny wpływ tych czynników zakłócających,

które pochodzą od aparatury i czynności pomiarowych, wielkości m

n

natomiast
reprezentuje wpływ ośrodka fizycznego.

background image

Dalmierze elektroniczne, oparte na wspólnej zasadzie można najogólniej

sklasyfikować według dwóch niezależnych kryteriów podziału, a mianowicie:

1) ze względu na rodzaj energii tworzącej i przenoszącej sygnały pomiarowe,
2) ze względu na formę tychże sygnałów.
Według pierwszego kryterium dzielimy dalmierze elektroniczne na dwie

grupy:

a) dalmierze elektromagnetyczne, w których sygnały pomiarowe przenoszone

są na falach elektromagnetycznych,

b) dalmierze ultradźwiękowe, w których za nośniki sygnałów służą

ultradźwięki.

Drugi podział — według formy sygnału pomiarowego — wyodrębnia ogólnie

dwie grupy:

A) dalmierze impulsowe posługujące się sygnałami w formie krótkich

odcinków fali harmonicznej, zwanych impulsami, które są emitowane przez
nadajnik N w określonych odstępach czasu T;

B) dalmierze fazowe, w których sygnał pomiarowy przesyłany jest w postaci

ciągłej fali harmonicznej; pomiar czasu

 odbywa się tu pośrednio — poprzez

pomiar różnicy fazy fali opuszczającej nadajnik N i fazy tej samej fali
powracającej — po retransmisji w R — do odbiornika O.

Ogólna klasyfikacja dalmierzy

elektronicznych

background image

Są również dalmierze, w których stosuje się kombinacje metody impulsowej i
metody fazowej.
Istnieją oczywiście
— dalmierze elektromagnetyczne impulsowe,
— dalmierze elektromagnetyczne fazowe.
W dalmierzach tych sygnały pomiarowe wytwarzane są drogą modulacji
odpowiedniej fali nośnej (światła, fali radiowej); w dalmierzach impulsowych jest
to oczywiście modulacja impulsowa, w dalmierzach fazowych — modulacja
sinusoidalna. W niektórych dalmierzach stosowana jest modulacja sygnałami
pseudoprzypadkowymi.
W grupie dalmierzy elektromagnetycznych wyodrębniamy dwie podgrupy
różniące się długością fal nośnych, a mianowicie:
a) dalmierze radiowe pracujące na falach radiowych w zakresie długości 

n

od

kilku milimetrów do ok. 1m;
b) dalmierze elektrooptyczne, zwane także dalmierzami świetlnymi, w których
jako nośniki sygnałów wykorzystuje się fale elektromagnetyczne z obszaru
światła widzialnego i bliskiej podczerwieni (

w

od 400 do 1000 nm). Do grupy tej

zaliczamy także trzecia podgrupę:
c) dalmierze interferencyjne, w których pomiary realizuje się bezpośrednio na
fali optycznej bez modulacji.
W zależności od celów, do jakich dany dalmierz jest przeznaczony, rozróżniamy
cały szereg specjalnych dalmierzy elektronicznych, wśród nich zaś
elektromagnetyczne dalmierze geodezyjne i systemy radiogeodezyjne.

background image

Elektromagnetyczne dalmierze geodezyjne charakteryzują się przede
wszystkim wysoką dokładnością (rzędu od 10

-4

do 10

-8

), stosunkowo małym

zasięgiem (praktycznie do 30—40 km) oraz przystosowaniem do pracy w
terenie (duża portatywność aparatury i wyposażenia). Ogół dalmierzy tego
rodzaju dzieli się jeszcze na podgrupy oznaczone wyżej literami A i B oraz —
niezależnie od tego — na podgrupę a i b. Dalmierze z podgrupy a pracują na
falach nośnych w zakresie mikrofal i z tego powodu zwane są powszechnie
dalmierzami mikrofalowymi.
W zakresie elektronicznych dalmierzy geodezyjnych, a także w zakresie
systemów radiogeodezyjnych, istnieje dalszy, bardziej szczegółowy podział na
typy, modele itp. Za kryteria klasyfikacyjne przyjmuje się rożne cechy
konstrukcyjne i parametry techniczne aparatury pomiarowej (np. zasięg,
dokładność).
Specjalne układy dalmierza elektrooptycznego łączone są z układami teodolitu
elektronicznego w jedna całość (ang. total station) tworząc rożne tachymetry
elektroniczne.

background image

Metoda impulsowa pomiaru
odległości

Impulsem nazywamy krótkotrwały przebieg pewnej wielkości fizycznej,
np. napięcia elektrycznego, natężenia światła lub natężenia dźwięku.
Stosowane

w

elektronicznych pomiarach odległości impulsy radiowe, impulsy
świetlne (rozbłyski) i impulsy ultradźwiękowe są więc krótkimi
,,porcjami" energii fali radiowej, strumienia świetlnego lub fali
ultradźwiękowej, pełniącymi funkcje sygnałów pomiarowych. W
impulsowych systemach radiogeodezyjnych stosowane są impulsy o
szerokościach 

imp

. od 0,1 do 2 mikrosekund (s).

Impulsy świetlne, zwane również optycznymi, wytwarzane są za pomocą
laserów ciał stałych (np. lasera rubinowego, lasera ze szkłem
neodymowym) i diod laserowych.
W laserach stałych akcja laserowa rozwija się nie w postaci
pojedynczego błysku, lecz w formie całej serii bardzo krótkich
rozbłysków na kształt szpilek. Impuls taki można opisać krzywą Gaussa.
Stosowane

w

nowoczesnych

impulsowych

dalmierzach

elektrooptycznych diody laserowe generują impulsy optyczne (w bliskiej
podczerwieni) o szerokości kilku nanosekund.
W dalmierzach impulsowych kolejne impulsy wysyłane są przez
nadajnik dalmierza w ustalonych i równych odstępach czasu T

imp

.

background image

Stosowane w nowoczesnych impulsowych dalmierzach elektrooptycznych

diody laserowe generują impulsy optyczne (w bliskiej podczerwieni) o
szerokości kilku nanosekund.

W dalmierzach impulsowych kolejne impulsy wysyłane są przez nadajnik

dalmierza w ustalonych i równych odstępach czasu T

imp

. Wielkość T

imp

. zwana

okresem powtarzania impulsów, jest ważnym parametrem metody impulsowej
definiującym ,,odległość czasową" następujących po sobie impulsów.
Odwrotność okresu T

imp

.

imp

imp

T

1

f

nazywamy częstotliwością powtarzania impulsów.

Iloczyn okresu T

imp

,, i średniej prędkości v rozchodzenia się ,,porcji" energii

tworzącej impuls określa pewien wzorzec długości

imp

imp

imp

f

v

vT

L

background image

W impulsowych dalmierzach radiowych wytwarzane są impulsy mikrofalowe
(1 m - 1 mm). Jako generatory tych impulsów stosowane są magnetrony

Dobór wartości f

imp

. uzależniony jest od zasięgu D

max

. danego dalmierza,

ponieważ musi być

max

imp

D

L

background image

Zasada metody impulsowej

Na rysunku pokazane są położenia: impulsu nadawanego i impulsu
odbieranego — na osi czasu. Wielkość  jest tu przedstawiona jako

odstęp czasu miedzy chwilami tw i tp, w których impuls nadawany
przekracza próg Upn impuls zaś odbierany - próg Upo. Impuls
nadawany zwany jest także impulsem sondującym.

Dla uproszczenia bierzemy pod uwagę oczywiście tylko wyidealizowane
sygnały użyteczne, pomijając wpływy szumów zniekształcających

.

background image

Metoda

fazowa

pomiarów

odległości

Ogólna zasada metody

fazowej

W dalmierzach fazowych stosowany jest ciągły sygnał pomiarowy w formie fali
sinusoidalnej, którą można opisać równaniem

)

t

sin(

a

y

0

gdzie a oznacza amplitudę,
 - częstotliwość kątową (pulsację),

t - czas,

o

- fazę początkową

.

Sygnał emitowany jest przez nadajnik N dalmierza i kierowany w stronę
reflektora R, skąd jest on odbijany w kierunku odbiornika O dalmierza.
Różnica fazy sygnału na wyjściu z N i fazy na wejściu do O mierzona jest w
układzie F zwanym fazomierzem. Różnicę tę, zwaną także opóźnieniem
fazowym lub przesunięciem fazowym, oznaczymy przez

.

background image

Faza sygnału pomiarowego na wyjściu z nadajnika N wyraża się wzorem

0

AN

t

Faza tegoż sygnału na wejściu do odbiornika O będzie opóźniona
względem

AN

o wielkość  przesunięcia fazowego i wyniesie



0

AO

t

gdzie  — czas przejścia sygnału na drodze ID.

background image

We wzorze pominięto zniekształcenia i dodatkowe opóźnienia fazowe
sygnału zachodzące na drodze 2D oraz w obwodach aparatury N, O, R i F.

W fazomierzu F, do którego przekazywany jest równocześnie sygnał wycho-
dzący o fazie

AN

(jako tzw. sygnał odniesienia) i sygnał powracający o fazie 

AO

tworzona jest różnica  obydwóch tych faz według wzoru:





)

t

(

t

0

0

AO

AN

Ale przesunięcie fazowe

składa się z pewnej liczby całkowitej N pełnych

kątów 2

 oraz z kąta niepełnego  zwanego resztą, czyli



N

2

2

0

background image

Poszukiwany czas  wyznaczymy z wzoru

2

N

Z ogólnego wzoru wynika natomiast, że

D

2

stąd

2

N

2

D

Stosując proste przekształcenia, otrzymujemy wzór podstawowy na odległość
mierzoną metodą fazową

 

2

N

fn

2

c

D

background image

Korzystając ze znanego związku między długością fali sinusoidalnej  a

częstotliwością f ruchu harmonicznego

fn

c

f

oraz

R

2

Możemy D wyrazić wzorem

R

N

2

D

background image

Wzór sugeruje analogię metody fazowej do metody pomiaru odległości

taśmą mierniczą, którą w przypadku dalmierza fazowego zastępuje połowa
długości fali sinusoidalnej, stanowiącej sygnał pomiarowy. Mierzona odległość
D składa się z całkowitej liczby N pełnych odłożeń odcinka /2 i z pewnej

„reszty„ R /2 tegoż odcinka, której to „reszcie" odpowiada odczyt „końcówki"

z ostatniego przyłożenia taśmy. Z tego też powodu wielkość /2 -nazywana

jest „przymiarem elektronicznym" lub „elektronicznym wzorcem długości",
sama zaś wielkość  nosi nazwę długości fali wzorcowej. Z tych samych

względów częstotliwość f występująca we wzorach zwana jest częstotliwością
wzorcową.

W elektromagnetycznych dalmierzach geodezyjnych stosowane są długości

fali wzorcowej  (podstawowej) w zakresie od 0,6 m do 40 m. Zwrócimy tu

jeszcze uwagę na fakt, że fazomierz F pozwala zmierzyć bezpośrednio tylko
część ułamkową kąta 2

, a więc „resztę"  całkowitego przesunięcia

fazowego

nie rejestruje on bowiem liczby N kątów pełnych. W związku z

tym we wzorach występuje wieloznaczność wyników pomiaru, którą należy
rozwiązać określając liczbę N .

Metodami wyznaczenia liczb) N są:

•skokowa zmiana w szerokich granicach stałych częstotliwości liczonych
w układzie dziesiętnym,

•skokowa zmiana częstotliwości fal w wąskich granicach (metoda różnicowa),

•ciągła zmiana częstotliwości wzorcowej w pewnym przedziale.

background image

Rozwiązywanie wieloznaczności

wyników pomiarów

Rozwiązywanie wieloznaczności wyników pomiaru pewnej odległości D
dalmierzem fazowym, odbywa się na podstawie dodatkowych pomiarów tejże
odległości wykonywanych z użyciem kilku odpowiednio dobranych częstotliwości
wzorcowych, a więc z zastosowaniem kilku „przymiarów elektronicznych" o
różnych długościach .

Metoda skokowych zmian częstotliwości w szerokich

granicach

W metodzie tej stosuje się szereg stałych częstotliwości wzorcowych znacznie
różniących się między sobą. Najczęściej stosowany system częstotliwości stanowi
malejący postęp geometryczny o ilorazie 10

-1

f

1

, 0.1 f

1

, 0.01f

1

, 0.001f

1

któremu odpowiada rosnący postęp geometryczny fal wzorcowych o ilorazie

10:

i, 10i, 100 i, 1000 i,...

Częstotliwość f nazywamy podstawową częstotliwością wzorcową, a następne

wyrazy ciągu które tu oznaczymy przez f

2

,f

3

,f

4

,... — częstotliwościami

pomocniczymi.

Proces wyznaczania liczby N i odległości D na podstawie pomiarów

wykonanych z zastosowaniem kolejnych częstotliwości wzorcowych /i, f i, f

3

, f

4

zilustrujemy na przykładzie liczbowym, w którym przyjmujemy D=6724,53 m i

i

=20 m. Zakładamy ponadto, że fazomierz wyskalowany jest w jednostkach

długości (np. kątowi 2  odpowiada zakres podziałki długościowej równy

/2=10 m) oraz że może on wskazywać trzy cyfry znaczące.

background image

Pomiar

Częstotliwo

ść f

Przymiar

/2

Odczyt

fazomierza

1

f

1

/2=

10.00m

453

2

f

2

=0.1f

1

/2=

100.0m

245

3

f

3

=0.01f

1

/2=1

000m

724

4

f

4

=0.001f

1

/2=10

000m

672


N=672.453
N = 672 R
=0,453

D= 672*10+4.53=
6724.53

background image

Sprawdzanie dalmierzy

Zgodnie z instrukcją G-2 dalmierze elektrooptyczne wykorzystywane do
pomiarów osnów poziomych powinny być sprawne techniczne, mieć metrykę
instrumentu, atest i aktualne świadectwo komparacji.
Atestacja przyrządów pomiarowych, legalizująca sprzęt stosowany do prac
geodezyjnych, jest w Polsce wykonywana przez Instytut Geodezji i Kartografii
(IGiK)w Warszawie. Dotyczy ona w szczególności nowych dalmierzy
elektrooptycznych oraz tych. w których podczas naprawy wymieniano układ
nadawczo-odbiorczy lub elementy fazomierza. W ramach atestacji określa się:
dokładność, zasięg, stałą dodawania, poprawkę fazomierza. częstotliwość
wzorcową dalmierza oraz dokonuje sprawdzenia i rektyfikacji jego osprzętu.
Komparacja okresowa polega na sprawdzeniu i aktualizacji parametrów
technicznych dalmierza oraz przeglądzie osprzętu. Dokonuje jej także Instytut
Geodezji i Kartografii lub jednostka przez niego upoważniona. Komparację
przeprowadza się na po naprawie instrumentu oraz na początku i końcu sezonu
pomiarowego, jednak nie rzadziej niż jeden raz w roku. Wyniki komparacji
wpisywane są do metryki instrumentu oraz wy dawane jest urzędowe
świadectwo komparacji.
Celem kontroli polowych, które powinny być dokonywane przez użytkownika
sprzętu przynajmniej raz na miesiąc, jest sprawdzenie najważniejszych
parametrów dalmierza oraz weryfikacja jakości pracy obserwatora.

background image

Komparacja dalmierzy
elektromagnetycznych

W praktyce pomiarowej występują błędy instrumentalne o
charakterze systematycznym, które są przedmiotem oddzielnego
postępowania pomiarowo-badawczego zmierzającego do wyznaczenia
odpowiednich poprawek kompensacyjnych. Postępowanie takie
będziemy nazywali komparacją dalmierzy.

Drogą komparacji kontroluje się i wyznacza dla danego dalmierza

trzy
następujące wielkości:

1) częstotliwość wzorcową f

w

lub związany z nią współczynnik skali

długości,

2) poprawkę k („stałą") dodawania,
3) błąd cykliczny fazomierza.

Większość

badań

prowadzi

się

na

specjalnych

bazach

komparacyjnych zwanych także bazami testowymi.

Na ogół zaleca się, aby badania wymienionych wyżej wielkości były

przeprowadzane oddzielnie dla każdej z nich. Jednakże w przypadku
korzystania z terenowych baz komparycyjnych stosowane są często
metody równoczesnego wyznaczania dwóch lub nawet wszystkich
trzech poprawek.

Wspomniane wyżej terenowe bazy komparacyjne mają najczęściej

długość ok. l km. Ze względu na konieczność zapewnienia korzystnych
warunków fizycznych dla pomiarów komparacyjnych, bazy takie
powinny być zakładane w terenie suchym i przewiewnym.

background image

Linia bazy powinna być zorientowana równolegle do kierunku

panujących wiatrów. Pożądane jest także, aby powierzchnia terenu w
strefie samej bazy była płaska i porośnięta trawą. Ten warunek, a także
warunek, aby teren bazy nie był podmokły, ma istotne znaczenie dla
komparacji dalmierzy mikrofalowych (ze względu na błąd odbicia).
Punkty stałej bazy terenowej utrwala się zwykle filarami
obserwacyjnymi posadowionymi poniżej poziomu przemarzania gruntu.
Każdy z filarów wyposażony jest zwykle w urządzenie do wymuszonego
centrowania instrumentów. Długości poszczególnych odcinków stałej
bazy komparacyjnej są zwykle pomierzone z dokładnością co najmniej o
jeden rząd wyższą od dokładności komparowanych dalmierzy.

background image

Komparacja częstotliwości wzorcowej

Wzorzec długości 1/2

w

dalmierza fazowego określony jest przez

podstawową częstotliwość wzorcową f

w

. Częstotliwość ta

wytwarzana jest z reguły przez generator kwarcowy, który
zapewnia wysoki stopień jej stabilności. Ponadto, w celu
uniezależnienia tej częstotliwości od temperatury otoczenia, w
wielu dalmierzach — zwłaszcza średniego i dużego zasięgu —
umieszcza się oscylator kwarcowy generatora w termostacie. Pod
wpływem różnych czynników, głównie zaś na skutek starzenia się
kwarcu, częstotliwość ta może się jednak zmieniać w stopniu
znaczącym, co powoduje zmianę skali mierzonych odległości. Z
tego powodu przynajmniej podstawowa częstotliwość wzorcowa
f

w

, musi być okresowo kontrolowana, a stwierdzone jej odchylenie

od wartości nominalnej f

wn

, czyli różnica

w

wn

f

f

f

musi być odpowiednio uwzględniona w wynikach pomiarów
odległości.

background image

Poprawka

D

f

do pomierzonej odległości D, kompensująca

wpływ odchylenia f wyraża się wzorem

D

f

f

D

w

f

a jej wartość jednostkowa, określająca zmianę skali, wzorem

w

s

f

f

k

W zasadzie komparację częstotliwości wzorcowych powinno się
przeprowadzać w sposób bezpośredni przez porównanie jej
aktualnej wartości f

w

z częstotliwością— etalonem f

e

wytwarzaną

przez specjalne generatory. Komparacja taka polega na
mieszaniu obydwóch tych częstotliwości i wyznaczeniu wartości
ich różnicy

f=f

e

-f

w

. Tego rodzaju bezpośredni pomiar częstotliwości f

w

przeprowadza się w laboratoriach odpowiednich instytucji (w
Polsce: Centralny Urząd Jakości i Miar w Warszawie, Instytut
Geodezji i Kartografii) z dokładnością rzędu ±1x10

-7

background image

Komparację częstotliwości fw można realizować także w

warunkach polowych przez porównanie aktualnej jej wartości z
tzw. krajowym wzorcem częstotliwości f

e

fal radiowych

emitowanych regularnie przez niektóre radiostacje (w Polsce
Rozgłośnia Warszawska PR w programie I). Oficjalnie stałość
tych częstotliwości jest rzędu 5x10

-9

. Poprawkę z tytułu zmian

częstotliwości f

e

podaje Polskie Radio codziennie o godz. 12.00.

Do tego celu stosowane są specjalne radioodbiorniki

wyposażone w układ do pomiaru różnicy f

Kontrolę podstawowej częstotliwości wzorcowej dalmierzy

zaleca się przeprowadzać 2—3 razy w ciągu roku.

Współczynnik zmiany skali k

s

, a pośrednio i częstotliwość fw,

mogą być kontrolowane przez pomiar danym dalmierzem bazy
komparacyjnej o dokładnie znanej długości D. Jeżeli bowiem do
wyniku tego pomiaru zostanie wprowadzona poprawka
dodawania k oraz poprawka z tytułu błędu cyklicznego,

D

D

D

k

s

gdzie D — długość bazy pomierzona dalmierzem

.

background image

Stała dodawania k

background image

)

D

D

(

D

k

2

1

3

n

1

i

i

D

D

1

n

1

k

Sposób powyższy można uogólnić, dzieląc całą bazę na n
odcinków o nieznanych długościach: D

1

, D

2

,..., D

n

. Jeżeli bowiem

danym dalmierzem zostaną pomierzone wszystkie odcinki D

i

(i = l,

2,.„, n) oraz cała długość D bazy, to

Jeżeli poprawki z tytułu błędu cyklicznego nie są znane, to wpływ
tychże błędów na wyznaczenie poprawki k można wydatnie
ograniczyć przez odpowiedni dobór długości odcinków D.

background image

Można dobrać długość kolejnych odcinków D, tak, aby odczyty
„reszt" li były rozmieszczone równomiernie na całym zakresie
wzorca długości

w

/2. Ponieważ pełny okres zmienności błędu

cyklicznego uwidacznia się właśnie w przedziale

w, więc można

się spodziewać, że przy tworzeniu sumy D

i

dodatnie i

ujemne wartości tegoż błędu ulegają znacznej kompensacji.
Sposób ten jest szczególnie wygodny (choć niezupełnie ścisły)
przy

kontrolowaniu

poprawki

k

podczas

pomiarów

wykonywanych z dala od stałej bazy komparacyjnej. Założona w
danym terenie prowizoryczna baza testowa z reguły nie jest
utrwalana filarami obserwacyjnymi

i

w

i

i

l

N

D

2

gdzie

w

i

w

i

2

l

background image

Błąd cykliczny i sposoby jego

wyznaczania

Błąd cykliczny ma swoje źródło w sprzężeniach pasożytniczych
pojawiających się między częścią nadawczą a częścią odbiorczą
dalmierza. Błąd ten można interpretować jako wynik nakładania
się na użyteczny sygnał powracający — sumarycznego sygnału
zakłócającego o tej samej częstotliwości. Ponadto błąd cykliczny
pojawia się w elektrycznym przesuwniku fazy. Na podstawie
rozważań teoretycznych i badań doświadczalnych ustalono, że
błąd ten można przedstawić ogólnie w postaci szeregu Fouriera
typu

)

l

3

3

sin(

a

)

l

2

2

sin(

a

)

l

2

1

sin(

a

w

i

3

w

i

2

w

i

1

pi

gdzie a

1

,a

2

,a

3

..,... —amplitudy,

 — przesunięcie fazy błędu cyklicznego względem zerowego

odczytu l

i

l

i

jak we wzorze

background image

Zwykle amplitudy a

2

,a

3

... wyższych harmonicznych szeregu są

bardzo małe, a istotne znaczenie ma pierwszy wyraz tegoż
szeregu. W związku z tym można przyjmować

)

l

2

1

sin(

a

w

i

1

pi

Gdy odczyty fazomierza podawane są w jednostkach kątowych,

)

sin(

a

i

1

pi

przy czym

0 i 2

Wielkość 

p

jest funkcją „reszty" li lub i a jej pełny okres

zmienności mieści się w przedziale [0, 2] mierzonej

odległości.

background image

Ponieważ amplitudy a1, a2, a3,... oraz faza początkowa nie są

znane, więc przebieg zmienności p dla każdego dalmierza

trzeba

określić

drogą

pomiarów

doświadczalnych.

Doświadczalny sposób badania wielkości p polega na pomiarze

danym dalmierzem szeregu dokładnie znanych odległości
D„ których „końcówki" li rozmieszczone są równomiernie w
przedziale [O, /2]. Pomiary takie wykonuje się na bazie

komparacyjnej, przy czym stosowane są dwa zasadnicze sposoby:

1) niezależne określenie przebiegu krzywej błędu p,

2) równoczesne wyznaczenie poprawki dodawania k i

parametrów

opisujących

krzywą błędu p.

Prosty układ bazy komparacyjnej dla pierwszej metody
przedstawiono

na

rysunku. Punkt A oznacza stanowisko dalmierza, punkty zaś B

,

(i

=

l, 2

,...,

k)

kolejne stanowiska reflektora (stacji pomocniczej).

Przy kolejnych ustawieniach reflektora (stacji pomocniczej) na
punktach

Bi

mierzy się danym dalmierzem odległości D

aki

=

D

i

, a

następnie tworzy się różnice

i

i

i

D

D

d

gdzie D

i

— dokładna długość mierzonego

odcinka.

background image

Pomiary wykonuje się tylko na podstawowej częstotliwości

wzorcowej. Ponieważ pełny cykl zmienności p ujawnia się zwykle

na odcinku 

1k

= D

Ak

~D

A1

= 

w

/2, więc minimalna odległość

skrajnych punktów B, musi być nieco większa od długości
„przymiaru" podstawowego. W praktyce stosuje się niekiedy D

Ak

-

D

A1

=

w

, uzyskując w efekcie dwa cykle zmienności błędu p.

Odstępy między sąsiednimi punktami B

i

nie powinny być większe

niż 0.1

w

/2

Wyniki pomiarów przedstawia się graficznie, nanosząc na

wykresie

punkty

o

współrzędnych li, oraz di Na rysunku pokazano przykładowo taki
wykres.

background image

W warunkach laboratoryjnych baza testowa wykonana jest

zwykle

w

formie

prowadnicy, po której przesuwany jest wózek z ustawionym na
nim

reflektorem

(lub stacją pomocniczą) badanego dalmierza. Na prowadnicy tej
zaznaczone

punkty Bi będące stanowiskami reflektora. Odległości D

Ai

tych

punktów

od

stano-

wiska A dalmierza są wyznaczone co najmniej z dokładnością
rzędu

±0,1

mm.

Długość odcinka B

1

B

n

prowadnicy jest zwykle równa

najdłuższemu z „przymiarów„

w

/2 dalmierzy komparowanych na

danej bazie. Pomiary dalmierzem odległości D

AI

dostarczają

różnic di na podstawie których określa się następnie krzywą
zmienności błędu

p.

Inny, bardzo już precyzyjny sposób laboratoryjny opiera się na

zastosowaniu
interferometru laserowego do pomiaru długości Di, odcinków
B

1

B

i

,

prowadnicy.

W

tym przypadku na wyżej wspomnianym wózku ustawia się —
obok reflektora dalmierza — blok reflektorowy interferometru.
Sam

interferometr

ustawiany

jest

dokładnie na linii bazy między A i Bi. Przesunięcia wózka od
punktu początkowego B

1

do punktów Bi, a więc długość

odcinków Di, mierzone są przez interferometr, a wyniki tych
pomiarów przekazywane do komputera. Do pamięci komputera
wprowadza się także odległości D

Ak

pomierzone równocześnie

badanym dalmierzem. Dla każdej wartości D

Ak

komputer oblicza

wartości poprawki za

pi

.. Ze względu na bardzo wysoką

dokładność pomiaru długości Di, wielkości

p, mają charakter

błędów prawdziwych.

background image

Równoczesne wyznaczanie poprawki dodawania,

współczynnika zmiany skali i błędu cyklicznego

Gdy poprawki z tytułu zmian częstotliwości wzorcowej nie
mogą być wyznaczone niezależnie lub gdy zachodzi potrzeba
skontrolowania tejże częstotliwości na bazie komparacyjnej,
pomiary

odcinków

Di bazy, badanym dalmierzem mogą dostarczyć

także wartości aktualnego współczynnika ks zmiany skali.
Wartość k

s

można wyznaczyć z różnic d, równocześnie z

poprawką k i

p pod warunkiem jednak, że baza zawiera

odcinki Di znacznie różniące się długością.
W najprostszym przypadku, gdy wielkość

p zmienia się

sinusoidalnie, równanie poprawki dla różnicy di ma postać
następującą





w

i

i

s

i

i

l

2

sin

A

D

k

k

v

d

background image

Jeżeli liczba n niezależnie pomierzonych odcinków D

i

jest

większa od czterech, to najprawdopodobniejsze wartości
niewiadomych: k, k

s

, A i

wyznacza się z odnośnych różnic d

i

metodą najmniejszych kwadratów. W równaniach liniowych
postaci pojawi się wtedy niewiadoma dk

s

taka, że

s

0

s

s

dk

k

k

gdzie k

so

wartość przybliżona

W celu uzyskania większej liczby obserwacji mierzy się odcinki
Di w n kombinacjach. Tak na przykład na bazie AF z czterema
punktami pośrednimi B, C, D i E (n = 5) można pomierzyć
niezależnie 15 odcinków (rys.), a mianowicie:

AB, AC, AD, AE, AF,

BC, BD, BE, BF,

CD, CE, CF,

DE, DF,

EF.

2

)

1

n

(

n

n

k

background image

PROPAGACJA FAL ELEKTROMAGNETYCZNYCH W

ATMOSFERZE

Całokształt zjawisk związanych z rozchodzeniem się fali

elektromagnetycznej w jakimś ośrodku, nazywamy propagacją. W
interesującym nas przypadku
- w powietrzu. Ośrodek ten oddziałuje w różny sposób na falę
elektromagnetyczną, w zależności od długości fali oraz od jego składu i
stanu fizycznego. Do
najważniejszych wpływów tego ośrodka na rozchodzącą się w nim falę
elektro-
magnetyczną należą:

1) zmiany prędkości fali,
2) zakrzywienie toru fali,
3) zmiany wiązki promieniowania wywołane turbulencją powietrza

(tylko w zakresie

optycznym),
4) rozpraszanie i absorpcja promieniowania.
Pomiar odległości wykonujemy za pośrednictwem fal

elektromagnetycznych, więc wszystkie te zjawiska w większym lub
mniejszym stopniu wpływają na wynik pomiaru odległości, oraz zasięg
pomiaru.

Propagacji fal elektromagnetycznych w zakresie mikrofalowym mogą

towarzyszyć również zjawiska wywołane stycznością wiązki mikrofal z
powierzchniami
obiektów leżących na trasie jej przelotu; są to głównie:

a) ugięcie fali nośnej na przeszkodach,
b) odbicie fali od powierzchni terenu.

background image

Prędkość rozchodzenia się fal elektromagnetycznych w próżni jest
dla całego widma promieniowania elektromagnetycznego jednakowa
i stanowi uniwersalną stałą fizyczną c. Aktualnie obowiązująca w
geodezji wartość liczbowa stałej c została zalecona przez
Międzynarodową Asocjacje Geodezyjną i wynosi:

c= 299 792 4581,2 m/s

Prędkość rozchodzenia się fal elektromagnetycznych w powietrzu

zależy głównie od trzech parametrów meteorologicznych: t, p, e
ośrodka oraz od długości  fali nośnej. Zależność ta wyraża się

ogólnie poprzez współczynnik załamania (refrakcji)

)

,

,

,

(

e

p

t

f

n

Współczynnik refrakcji mikrofal

W zakresie mikrofalowym, z wyjątkiem częstotliwości bliskich 60 i 22
GHz, współczynnik refrakcji atmosferycznej nie zależy od długości fali,
a jedynie od temperatury, ciśnienia i wilgotności atmosfery. Zależność
tę opisują empiryczne wzory Essena,. Smitha-Weintrauba oraz Essena-
Frooma. Międzynarodowa Unia Geodezji i Geofizyki IUGG zaleciła w
1960 r. zastosowanie wzoru Essena-Frooma. Ma on postać:

e

T

T

e

p

T

n

N

)

5748

1

(

70

.

64

)

(

624

.

77

10

)

1

(

6

background image

n = 1+N x 10

-6

– współczynnik refrakcji

T – temperatura powietrza wK

P – ciśnienie atmosferyczne w hPa
e – cząstkowa prężność pary wodnej hPa
Można też spotkać ten wzór w postaci:

e

T

T

e

p

T

n

)

5748

1

(

26

,

86

)

(

49

,

103

10

)

1

(

6

gdzie
n = 1+N x 10

-6

– współczynnik refrakcji

T – temperatura powietrza wK

P – ciśnienie atmosferyczne w mm Hg
e – cząstkowa prężność pary wodnej w
mmHg

Prężność pary wodnej e jest określana w praktyce pomiarowej poprzez
pomiar temperatury suchego t i zwilżonego t

, termometru w

psychrometrze aspiracyjnym

)

(

10

67

.

0

)

(

)

8

.

827

1

(

10

67

.

0

'

3

'

'

'

3

'

t

t

p

e

t

t

p

t

e

e

background image

gdzie:
t i t

– temperatura suchego i zwilżonego termometru w C

e

– prężność pary nasyconej w temperaturze t

(z tablic)

p, e

– w jednakowych jednostkach

Współczynnik refrakcji fal optycznych

Podobnie jak dla mikrofal MUGG zaleciła stosowanie współczynników
Barella i Searsa. Dla suchego powietrza o:
temperaturze 0C (273.15°K),

ciśnieniu 760 mm Hg (1013.25 hPa)
zawartości CO

2

0.03%

 - wyrażono w m.

4

2

6

068

.

0

8864

.

4

604

.

287

10

)

1

(

go

go

n

N

background image

Dla dowolnych warunków meteorologicznych współczynnik

refrakcji według wzoru Barrela i Searsa ma postać:
gdzie T wyrażono w K, e i p w hPa

T

e

T

p

N

n

N

g

g

g

27

.

11

2696

.

0

10

)

1

(

0

6

Jest stosowany wzór równoważny

T

e

T

p

N

n

N

g

g

g

02

.

15

3594

.

0

10

)

1

(

0

6

gdzie: T wyrażono w K, e i p w mm Hg:

W literaturze można spotkać inną postać

tego wzoru:

e

t

p

t

n

n

g

g

1

10

55

760

1

1

1

9

0

background image

Wzór

Rodzaj fali

elektromagnety

cznej

mikrofale

w

>1 cm

1.0 x 10

-4

0.4 x 10

-

4

6.6 x 10

-6

światło

w

0.54m

0.9x10

-6

0.4x10

-6

0.06 x10

-6

e

T

T

e

p

T

n

)

5748

1

(

26

,

86

)

(

49

,

103

10

)

1

(

6

e

t

p

t

n

n

g

g

1

10

55

760

1

1

1

9

0

t

m

T

n

p

m

p

n

e

m

e

n

Wartości w tabeli obliczono przy następujących założeniach:
t=20°C,

m

t

=m

T

=±1°C

p=760 mm sł. rt.,

m

p

= 1 mm sł. rt. e=10 mm sł. rt.,

W celu określenia poprawki atmosferycznej do pomierzonej długości w sieci
ki. II trzeba na stanowisku instrumentu za pomocą sprawdzonego aneroidu
zmierzyć aktualne ciśnienie atmosferyczne z dokładnością odczytu do 0,5 mm
Hg (0,7 hPa) i temperatury z dokładnością odczytu do 0,5°C atestowanym
termometrem. Dokładność określenia powyższych parametrów nie może być
niższa od 1 mm H« i 1°C. Dla boków dłuższych od 2 km i różnicy wysokości
końców boku ponad 15 m, analogicznego pomiaru należy również dokonać na
punktach ustawienia reflektorów zwrotnych, zaś jako dane do obliczenia
poprawki przyjąć średnie z pomiarów na obu punktach. W kl. III osnowy
dokładność pomiaru temperatury i ciśnienia wynoszą odpowiednio: 1°C oraz 1
mm Hg (1,3 hPa).

background image

Wyniki pomiarów długości, wskazania przyrządów meteorologicznych,

wysokości instrumentu i sygnałów notuje się w dzienniku polowym lub rejestruje
w nośnikach pamięci zewnętrznej lub wewnętrznej dalmierza.

Do pomierzonej odległości należy wprowadzić następujące poprawki:
•poprawkę atmosferyczną K

a

•poprawkę stałej dodawania dalmierza K

d

•poprawkę dalmierza ze względu na cykliczne zmiany wskazań fazomierza

(poprawkę

fazomierza) K

f

•poprawkę redukcji pomierzonej długości do poziomu

•poprawkę redukcji odległości poziomej na powierzchnię elipsoid) GRS-80,

•poprawkę boku pomierzonego mimośrodowo.
Dwie poprawki tj. K

d

i K

f

zostają określone podczas komparacji okresowej

instrumentu i są zapisane w świadectwie komparacji.

Poprawka atmosferyczna
Poprawka atmosferyczna K

a

jest określana za pomocą wzorów, tablic lub

nomogramów zamieszczanych przez producenta w fabrycznej instrukcji obsługi
dalmierza. Poprawkę ustala się na stanowisku instrumentu na podstawie
pomiaru parametrów meteorologicznych: ciśnienia/' wyrażonego w mm Hg
hektopaskalach (hPa) lub milibarach (mb), temperatura w stopniach Celsjusza
(°C). a czasem dodatkowo wilgotności względnej powietrza w procentach.
Potrzeba pomiaru wilgotności zachodzi przede wszystkim w warunkach klimatu
gorącego i wilgotnego. Wartość poprawki wyrażonej w mm/km otrzymujemy na
podstawie opisu krzywej znajdującej się na przecięciu prostych prostopadłych
wyprowadzonych na skalach nomogramu z danych odczytów temperatury i
ciśnienia. Poprawkę dla pomierzonej odległości oblicza się z dokładnością do 1
mm jako wartość proporcjonalną do wyniku pomiaru wyrażonego w kilometrach.
Współczesne dalmierze z reguły obliczają poprawkę i redukują odległość
samoczynnie po wprowadzeniu danych meteorologicznych.

background image

Stała dodawania
Poprawka stałej dodawania dalmierza A, jest w rzeczywistości poprawką

układu utworzonego przez dalmierz i reflektor zwrotny, składa się zatem z dwóch
części. Część związana z dalmierzem wiąże się z jego konstrukcją i działaniem,
toteż może z czasem ulegać pewnym zmianom. Druga, niezmienna część stałej K

d

pochodzi od reflektora i związana jest z jego budową.

Jeśli korzystamy z oryginalnego zestawu fabrycznego dalmierz - pryzmat,

wtedy stała A jest z reguły równa zeru. co przeważnie jest wyraźnie zaznaczone
w instrukcji obsługi danego instrumentu. Posługując się nieoryginalnym
pryzmatem jesteśmy zobowiązani dokonać wyznaczenia stałej K

d

. Można tego

dokonać podczas sprawdzenia okresowego, mierząc przy pomocy zestawu
dalmierz - pryzmat znane wcześniej długości odcinków na bazie kontrolnej.
Wartość stałej A możemy określić jako średnią z kilku różnic obliczonych
pomiędzy długością znaną i pomierzoną. Innym sposobem jest pomiar co
najmniej trzech odcinków, z których dwa stanowią sumę odcinka trzeciego

Poprawka fazomierza

Zadaniem fazomierza jest pomiar przesunięcia fazowego Δφ. stanowiącego
różnicę fazy fali powracającej do odbiornika po jej odbiciu od reflektora i fazy
fali wysyłanej przez nadajnik. Poprawka fazomierza K

f

, jest to błąd

systematyczny wyznaczenia przesunięcia fazowego, zmieniający się cyklicznie
w zakresie skali pomiarowej fazomierza. Wyznaczenie poprawki odbywa się na
specjalnych bazach komparacyjnych. Konstrukcja współczesnych dalmierzy
elektromagnetycznych z reguły zapewnia automatyczne zminimalizowanie
poprawki K

t

.

background image

Poprawka redukcji odległości skośnej do odległości poziomej
Redukcja odległości skośnej (rzeczywistej) d'. czyli długości odcinka AB.
pomierzonej dalmierzem elektrooptycznym do odległości d
zredukowanej na płaszczyznę poziomą (odległości poziomej) wymaga
znajomości pionowego kąta nachylenia α (lub zenitalnego z) albo
przewyższenia h, czyli różnicy wysokości dalmierza i reflektora, która
zgodnie z rys. wyniesie:
Na podstawie tych wielkości można obliczyć odległość zredukowaną d w
oparciu o znane wzory, wynikające z trójkąta prostokątnego ABB':

)

(

)

(

i

H

s

H

h

S

P

z

d

d

d

d

sin

cos

'

'

background image

d

d

d

d

d

d

h

d

d

'

'

2

2

'

Poprawka redukcyjna Δd

jest zawsze ujemna. Znając kąt

nachylenia a lub zenitalny z można ją określić za pomocą wzoru:

)

sin

1

(

)

cos

1

(

'

'

z

d

d

d

Poprawka redukcji pomierzonej odległości na powierzchnie
elipsoidy GRS-80
Długość zredukowaną do poziomu, pomierzoną na średniej wysokości
H

sr

należy następnie zredukować na poziom zerowy, czyli powierzchnię

elipsoidy GRS-80. Odległość zredukowana na poziom elipsoidy d

m

obliczona na podstawie odległości d zredukowanej do poziomu wynosi:

gdzie: R - średni promień Ziemi, R = 6 367 650 m;
Hśr - średnia wysokość dalmierza i pryzmatu

Poprawka redukcyjna Δd

m

odległości d jest równa:

śr

m

H

R

R

d

d

)

(

)

(

2

1

i

H

s

H

H

S

P

śr

R

d

H

d

śr

m

background image

Błąd standardowy dalmierza

Dokładność pomiaru dalmierza przedstawia się najczęściej w
formie wzoru na standardowy błąd pomiaru długości md :

)

10

(

6

d

b

a

m

d

gdzie:
a – składnik stały składnik stały, zawierający w sobie zespół
jednostkowych błędów instru mentalnych oraz błąd określenia
poprawek instrumentalnych dalmierza.
b współczynnik proporcjonalny do mierzonej odległości,
zawierający błędy: wyznaczenia prędkości fali elektromagnetycznej
w próżni i w aktualnych warunkach pomiarowych, określenia
częstotliwości wzorcowej i przesunięcia fazowego.
d – długość mierzonego boku wyrażona w metrach.
Drugi składnik błędu zawierający czynnik b może być wyrażany w
mm/km lub w ppm. (skrót od: parts per million). czyli milionowych
częściach mierzonej odległości. Błąd pomiaru odległości określony
wzorem stanowi bardzo ważny element charakterystyki technicznej
dalmierza, z reguły podawanej w jego instrukcji obsługi lub
prospekcie przez producenta instrumentu. Dobór dalmierza do
pomiaru odległości w sieciach osnów poziomych klasy II i III
powinien uwzględnić wymagania dokładnościowe pomiarów
liniowych podane w instrukcji technicznej G-2.


Document Outline


Wyszukiwarka

Podobne podstrony:
dalmierze elektromagnetyczne
Układy elektroniczne 2003, Uk�?ady Elektroniczne
ETP wyklad 10 dalmierze elektromagnetyczne dokladnosc pomiaru dalmierzami wplyw warunkow meteorologi
TACHIMETRY ELEKTRONICZNE 2003
7Wyznaczanie stałej dodawania dalmierza elektrooptycznego, AGH, II ROK, ETP
Komparacja dalmierzy elektromagnetycznych, Geodezja2
Dalmierze elektromagnetyczne, geodezja podstawy
Dalmierze elektroniczne
4 Dalmierze elektromagnetyczne
Ściągi z fizyki-2003 r, Napięcie elektryczne
Ściągi z fizyki-2003 r, Silnik elektryczny
Ściągi z fizyki-2003 r, Elektryczność
Ściągi z fizyki-2003 r, Elektryczność
egzamin 2002-2003, Notatki, Elektronika AGH III rok, [STUDIA] rok 3, Sieci, Egzamin - sieci, Egzam
Kolokwium I 2003, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, L
Egzamin 2003, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, Labor
edw 2003 08 s62 czI zapłon elektroniczny
Ściągi z fizyki-2003 r, Domowe instalacje elektryczne

więcej podobnych podstron