Algebra w2

background image

II. Polynomials

Definition 1.2:

Definition 1.2:

The real (or complex) polynomial of order n
(nN{0}) is a function W : R (or C) R (or C)

defined as follows:

Where a

k

R (or C) for 0kn and a

n

0.

The function w(x)  0 is the polynomial of order

-. The numbers a

k

for 0kn are called the

coefficients of polynomial W.

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

x

n

n

n

n

!!!

All real polynomials could be identified as a complex by
generalization of domain R (real) to C (complex).

background image

Example

:

R

R

:

15

4

3

)

(

3

w

x

x

x

w

order 3

R

R

:

7

9

1

)

(

7

9

p

x

x

e

x

x

p

order 9

R

R

:

3

)

(

q

x

q

order 0

C

C

:

,

4

)

3

2

(

)

(

6

15

v

i

z

i

iz

z

v

order
15

C

C

:

1

)

(

2

g

z

z

g

order 2

C

C

:

2

1

)

(

u

i

x

u

order 0

background image

Definition 2.2:

Definition 2.2:

Let P and Q are polynomials. The sum, difference
and product of P and Q is polynomial defined as:

)

(

)

(

)

(

),

(

)

(

)

(

x

Q

x

P

x

Q

P

x

Q

x

P

x

Q

P

df

df

sum/difference

product

Example

:

Find sum and difference of polynomials P and Q

;

5

1

)

(

,

1

)

(

2

2

x

x

x

Q

x

x

P

)

(

)

(

)

(

x

Q

x

P

x

Q

P

 

2

2

5

1

1

x

x

x

x

5

)

(

)

(

)

(

x

Q

x

P

x

Q

P

 

2

2

5

1

1

x

x

x

2

2x

x

5

2

Operations

background image

Definition 3.2:

Definition 3.2:

The polynomial S is a quotient and polynomial R
is a reminder of the division polynomials P by Q,
if for all x

R (or C) following condition is

satisfied

and order of R is lower then order of Q. If R(x) 

0, one say that P is

divisible by Q.

)

(

)

(

)

(

)

(

x

R

x

S

x

Q

x

P

Example

:

17

9

)

(

2

3

x

x

x

x

P

3

)

7

)(

2

(

2

x

x

x

6

5

3

8

)

(

2

4

x

x

x

x

P

)

6

11

8

8

)(

1

(

2

3

x

x

x

x

quotient
- order 2

reminder
- order 0

P(x) – order 3

Q(x) – order
1

quotient
- order 3

P(x) – order 4

Q(x) – order
1

P is divisible by Q

background image

i

z

iz

z

P

3

1

2

)

(

3

i

i

z

iz

i

z

7

7

)

4

2

2

)(

2

(

2

quotient
- order 2

reminder
- order 0

P(x) – order 3

Q(x) – order
1

Definition

Definition

4

4

.2:

.2:

Real (or complex) number x

0

is called root of real

(or complex) polynomial W when W(x

0

)=0.

i

i

i

i

i

W

z

W

4

2

)

1

(

2

)

1

(

)

1

(

)

(

2

1

i

i

i

4

2

)

2

2

(

)

1

2

1

(

0

i

i

i

i

i

W

z

W

4

2

)

2

1

(

2

)

2

1

(

)

2

1

(

)

(

2

2

i

i

i

4

2

)

4

2

(

)

4

4

1

(

i

2

3

Example

:

Example cont.

:

i

z

i

z

i

iz

z

z

W

2

1

,

1

,

4

2

2

)

(

2

1

2

Check if z

1

or z

2

is a

root of

Root of Polynomial

background image

Theorem 1.2: (Bezout)

Theorem 1.2: (Bezout)

Real (or complex) number x

0

is called root of real

(or complex) polynomial W if and only if exist
polynomial P that

)

(

)

(

0

x

P

x

x

x

W

• the reminder of division W by (x - x

0

) is equal W (x

0

)

!!!

Example

:

2

3

7

2

3

)

(

2

3

z

z

z

z

W

i

z

 2

0

2

3

)

2

(

7

)

2

(

2

3

)

2

(

)

(

2

3

0

i

i

i

z

W

2

3

)

2

(

7

)

2

2

1

(

2

3

)

5

2

(

i

i

i

2

3

7

2

7

12

2

3

5

2

i

i

i

0

 

i

z

i

z

i

z

z

z

z

2

2

)

2

2

(

)

2

(

2

3

7

2

3

2

2

3

W

P

z - z

0

background image

Proof:

Let

x

0

be a

root of polynomial W.

So

0

)

(

0

x

W

)

(

)

(

)

(

)

(

0

x

R

x

P

x

x

x

W

c

x

R

)

(

Order of the reminder has to be
lower then order of

)

(

0

x

x

x

0

is a

root of polynomial W

c

x

P

x

x

x

W

)

(

)

(

)

(

0

0

0

0

c

0

so

)

(

)

(

)

(

0

x

P

x

x

x

W

We know that

)

(

)

(

)

(

0

x

P

x

x

x

W

0

)

(

)

(

)

(

0

0

0

0

x

P

x

x

x

W

x

0

is a

root of polynomial W

background image

Definition

Definition

5

5

.2:

.2:

Real (or complex) number x

0

is called k-fold root

of real (or complex) polynomial W if and only if
exist polynomial P that

)

(

)

(

0

x

P

x

x

x

W

k

and

0

)

(

0

x

P

!!!

• if x

1

is k

1

-fold root, x

2

is k

2

-fold root,..., x

m

is k

m

-fold root

of polynomial then this polynomial is divisible by product

 

m

k

m

k

k

x

x

x

x

x

x

2

1

2

1

k-fold Root of Polynomial

background image

Theorem 2.2:

Theorem 2.2:

Let

be a polynomial with integer coefficients and
integer p

0 be a root of W.

Then number p is a divisor of free term a

0

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

n

n

n

n

Proof:

Let

p

0 be a

integer root of polynomial W.

So

0

)

(

0

1

1

1

a

p

a

p

a

p

a

p

W

n

n

n

n

p

a

p

a

p

a

a

n

n

n

n

1

1

1

0

1

2

1

1

a

p

a

p

a

p

n

n

n

n

Z

Z

number p is a divisor of free term a

0

background image

Find all integer roots of
polynomial W

8

5

2

)

(

2

3

x

x

x

x

W

Example

:

1

,

2

,

4

,

8

A

Set of „potential roots” of W

12

8

1

5

1

2

1

)

1

(

2

3

W

0

8

)

1

(

5

)

1

(

2

)

1

(

)

1

(

2

3

W

18

8

)

2

(

5

)

2

(

2

)

2

(

)

2

(

2

3

W

18

8

)

2

(

5

)

2

(

2

)

2

(

)

2

(

2

3

W

60

8

)

4

(

5

)

4

(

2

)

4

(

)

4

(

2

3

W

108

8

)

4

(

5

)

4

(

2

)

4

(

)

4

(

2

3

W

432

8

)

8

(

5

)

8

(

2

)

8

(

)

8

(

2

3

W

672

8

)

8

(

5

)

8

(

2

)

8

(

)

8

(

2

3

W

Solution:

1

0

x

background image

Rational Roots of Polynomial

Theorem

Theorem

3.2

3.2

:

:

Let

be a polynomial of order n with integer
coefficients a

k

(0k n). Furthermore let

number p/q be a root of polynomial W (p,q are
relatively prime integer numbers).
Then p is a divisor of free term a

0

and q is a

divisor or coefficient a

n

.

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

n

n

n

n

!!!

• if a

n

= 1 then all rational roots are integer;

notes that only 1 and –1 are divisors of a

n

and the

number p/q=

p

(integer number)

background image

Proof:

0

0

1

1

1

















a

q

p

a

q

p

a

q

p

a

q

p

W

n

n

n

n

We knew that

and p,q are relatively prime integer numbers.

0

0

1

1

1

1

n

n

n

n

n

n

q

a

pq

a

q

p

a

p

a

Number p is a divisor of number

a

0

q

n

, but

is not a divisor of q

n

. So p is a

divisor of a

0

0

0

n

q

a

pk

0

0

1

1

2

1

1

n

n

n

n

n

n

q

a

q

a

q

p

a

p

a

p

0

1

0

2

1

1

1

n

n

n

n

n

n

q

a

pq

a

p

a

q

p

a

0

ql

p

a

n

n

k

(integer

number)

l

(integer

number)

Number q is a divisor of number

a

n

p

n

, but

is not a divisor of p

n

. So q is a

divisor of a

n

background image

Example

:

Find all rational roots of polynomial W

1

3

4

)

(

2

4

x

x

x

x

W

1

2

1

,

4

1

A

Set of „potential roots” of W

64

21

64

64

48

4

1

1

4

3

16

1

64

1

1

4

1

3

4

1

4

1

4

4

1

2

4

W

64

117

64

64

48

4

1

1

4

3

16

1

64

1

1

4

1

3

4

1

4

1

4

4

1

2

4

 

 

 

 

W

0

4

4

6

1

1

1

2

3

4

1

4

1

1

2

1

3

2

1

2

1

4

2

1

2

4

W

3

4

12

4

4

6

1

1

1

2

3

4

1

4

1

1

2

1

3

2

1

2

1

4

2

1

2

4

 

 

 

 

W

 

3

1

3

1

4

1

1

3

1

1

4

1

2

4

W

 

9

1

3

1

4

1

)

1

(

3

)

1

(

)

1

(

4

1

2

4

W

Solution:

2

1

0

x

background image

The Fundamental Theorem of Algebra

Theorem

Theorem

4

4

.

.

2

2

:

:

(

(

the Fundamental Theorem of

the Fundamental Theorem of

Algebra

Algebra

)

)

Every complex polynomial of positive order has
at least one complex root.

Proof:

- too complicated (some method of calculus and advanced
algebra are needed)

Number Class Notation

Equation

positive integer

N

integer

Z

rational

Q

real

R

complex

C

0

5

x

0

5

4

x

0

2

2

x

0

3

2

x

all equations have complex root


Document Outline


Wyszukiwarka

Podobne podstrony:
Psycholgia wychowawcza W2
SP dzienni w2
w2 klasy(1)
W2 Chemiczne skladniki komorki
OK W2 System informacyjny i informatyczny
W2 6
W2 Uproszczone formy rachunkowości
W2 i W3
ulog w2
UC W2
w2 podsumowanie
W2 cele

więcej podobnych podstron