W01(Patomorfologia) II Lek

background image

1

Patomorfologia

Wykład 01

cracked by fazi
created by: sobatolog

background image

2

Aspects of Disease

• Etiology

– cause of disease

• Pathogenesis

– mechanism of development

• Morphologic changes

– structural alterations within cells and organs

caused by a disease

• Clinical & Functional Significance

(Symptoms)

– consequences of morphologic changes

background image

3

Disease Etiology -

VINDICATE

• Vascular
• Infections

– viral, bacterial, mycobacterial, fungal,

protozoall…

• Neoplastic

– malignant tumors…

• Drugs or toxins

background image

4

Disease Etiology – VINDICATE,

cd.:

• Idiopathic
• Congetital

– chromosomal abnormalities, gene defects

• Autoimmune disorders
• Trauma or environmental

– heat, cold, vitamin deficiences, nutritional…

• Endocrine / metabolic

– diabetes, acidosois…

background image

5

Morphologic Changes

• Morphologic changes in cell and

tissue structure may either be
characteristic or suggestive of the
disease process in question

• Morphologic changes which are

diagnostic of a specific disease are

pathognomic

background image

6

Cell injury

Adaptation

altered steady state
new homeostatis
(i.e.muscle
hypertrophy)

Cell injury

reversible or
irreversible cell
death (necrosis)
(myocardial infarct)

Cell in normal environment – homeostatic (steady state)

physiologic stress / pathologic stimull

adaptive capacity exceeded

background image

7

Cell injury

background image

8

Causes Cell Injury

• Hypoxia & ischemia
• Free-radical injury
• Physical agents (heat, cold, radiation,

trauma)

• Chemical agents & drugs
• Infectious organism
• Immunologie reactions
• Genetic derangements
• Nutritional imbalances

background image

9

Principles of Cell Injury

• A cell / tissue’s response to injury is

dependent upon

– Injury factors

• type of infury (ischemia vs. toxic vs. infection

…)

• duration injury
• severity of the inciting injury

– Cellular factors

• cell type
• stage of cell cycle
• cell adaptability

background image

10

Principles of Cell Injury

Susceptibility of cells to Ischemic

Necrosis

• High

– neurons

• 3-5 min.  ischemia

• Intermediate

– myocardium, hepatocytes renal

epithelium

• 30 min-2hrs  ischemia

• Low

– Fibroblasts, Epidermis Skeletal Muscles

• several hours  ischemia

background image

11

Principles of Cell Injury

• Systems hughly vulnerable to injury

– cellular membranes
– mitochondria (aerobic respiration)
– endoplasmic reticulum (protein synthesis)
– genetic apparatus (DNA, RNA)

• Injury at one focus often has a cascade

effect on multiple systems

– impaired aerobic respiration  disruption Na

pump cell membrane

background image

12

General Biochemical

Mechanisms of Cell Injury

• ATP depletion

• Oxygen free radicals

• Loss of calcium homestatis

• Membrane damage

• Irreversible mitochondrial damage

background image

13

ATP DEPLETION

• ATP required for

– membrane transport, protein synthesis,

lipogenesis

• Production of ATP

– oxidative phosphorylation of ADP (major

pathway)

• aerobic respiration, requires O

2

– glycolytic pathway (minot pathway)

• does not require O

2

background image

14

Oxygen-Derived Free

Radicals

• Reactive Oxygen Species (ROS)

– O•

2

(superoxide anion), H

2

0

2

(peroxide), OH

(hydroxyl radical)

– byproduct of mitochondrial respiration & other

causes

– radical scavenging system

• suproxide dismutase, catalase, glutathione

peroxidase

• neutralize ROS, prevent cell injury

– imbalance between ROS production and

scavenging system  cell injury (oxidative stress)

• damage proteins, lipids, nucleic acids

background image

15

Loss of Calcium (Ca)

Homeostasis

• Normal cell

– High extracellular Ca, Low intracytosolic

Ca

•intracellular Ca sequestered in

mitochondria (mito.) & endo plasmic
reticulum (ER)

•gradients maintained by membrane

associated energy (ATP) dependent
ATPases

background image

16

Loss of Calcium (Ca)

Homeostasis

Cell Injury

• Cell injury (ischemia, certain toxins)
• Influx Ca into cytosol from extracellular

space, mitochondria & endoplasmic
reticulum

• Activates intracellular enzymes  cell injury

– proteases  damage membrane &

cytoskeleton proteins

– phospholipides  damage membranes
– ATPases  deplete ATP
– endonucleases  damage DNA

background image

17

Membrane Damage

• Loss of membrane selective

permeability

– Ca influx  enzyme activation 

• Causes

– ATP depletion

• effect energy dependent ATPases

– Direct damage

• bacteria, viruses, complement, neutrphile

enzymes & ROS, lymphocytes porphorins,
physical & chemical agent

background image

18

Irreversible Mitochondrial

Damage

• Causes

– inc. cytoplasmic Ca, phospholipases, ROS …

• Formation of high conductance channels

in inner mitochondrial membrane
(mitochodrial permeability transitions)

– prevent maintenance of proton motive force

(potential) across membrane  cessation of

oxidative phosphorylation

• begins at reversible change becomes irreversible

background image

19

Irreversible Mitochondrial

Damage

• Leakage of cytochrome c into cytosol

 apoptosis

background image

20

Cell Injury

Reversible vs. Irreversible Injury

• Cell injury is a continuum, and it is not

possible to precisely identify the exact
point at which injury becomes irreversible

– Certain ultrastructural & light microscopie

changes are associated with each type of
infury

• When irreversible injury occurs, the cell

undergoes

necrosis

, which is the light-

microscopie hallmark of cell death

background image

21

Cell Injury

Reversible vs. Irreversible Injury

• Permanent organ injury is generally

associated with cellular necrosis

• The cellular response to persistent

sub-lethal injury reflects adaptation
of the cell to a hostile environment

– these changes are usually

reversible

on

discontinuation of the stress

background image

22

Manifestation of reversible Cell

Injury (Degeneration)

Electron Microscopic Changes

• Cellular swelling (light microscopy)
• Endoplasmic reticulum swelling
• Ribosome detachment endoplasmic

reticulum

• Mitochondria swelling
• Blebs at cell surface
• Loss at microvilli
• Early clumping of nuclear chromatin

background image

23

Reversible Cell Injury

Cell swelling – Light Microscopy

Normal

epithelium

Cellular Swelling

background image

24

Reversible Cell Injury

Electron Microscopy

(EM)

Normal epithelium

Apical blebbing loss of microvilli

background image

25

Manifestation of Irreversible

Cell Injury (Necrosis)

• Disruption of plasma & cell membranes (EM)
• Rupture of lysosomes (EM)
• Pyknosis – nuclear shrinkage &

condensation (EM & light)

• Karyorrhexis - nuclear shrinkage &

fragmentation (EM & light)

• Karyolysis – nuclear dissolution (EM & light)
• Mitochondrial Dense Bodies (calcium) (EM)

background image

26

Irreversible Cell Injury

• Irreversible injury is classified into

two types depending on the
underlying mechanism

necrosis

&

apoptosis

– both look similar under the light

microscope

•can be distinguished by electron

microscopy

background image

27

Irreversible Cell Injury

Pyknosis – Light Microscopy

background image

28

Cell Injury

Pyknosis - EM

Pyknotic nucleus

Normal nucleus

background image

29

Cell Injury

Karyorrhexis – Light Microscopy

background image

30

Cell Injury

Karyorrhexis - EM

background image

31

Cell Injury

Karyorrhexis – Light Microscopy

background image

32

Cell Injury

Dense Bodies in Mitochondria

background image

33

Overview of cell injury

background image

34

Ischemia & Reperfusion

Injury

background image

35

Ischemia – Reversible Cell

Injury

background image

36

Ischemia – Reversible Cell

Injury

• Irreversible cell injury is consistently

charakterized by

– Irreversible mitochondrial damage

causing severe ATP depletion

– Severe disruption of membrane function

background image

37

Mechanisms Reperfusion

Injury

• Increased production of ROS by

parenchymal cells, endothelium &
infiltrating leukocytes due to

– Oxidases derived from parenchyma,

endothelial cells & lekocytes

– Cells biochemically damaged by anoxia

• incomplete reduction of O

2

by mitochondria

• compromised radical scavenging system

background image

38

Free Radical – Induced Cell

Injury

background image

39

Free Radicals

• Chemical species (usually O

2

) with a

single unpaired electron in an outar

orbit

• Unstable configuration  reactions with

adjacent molecules (proteins, lipids,

carbohydrates, nucleid acids)

• Can initiate autocatalytic reactions

– react with other molecules & convert them

into free radicals

– chain reaction pf auto-propagation

background image

40

Formation of Free Radicals

• Cellular respiration (byproduct)

– O

2

mitochondria O

2

•- SOD H

2

O

2

• Activated PMNs (neutrophils)during

inflammation  O

2

•-

• Transition metals (Fe, Cu) in intracellular

reactions donate or accept free electrons

– H

2

O

2

+ Fe

2

+

 Fe

3

+

+ OH = OH

-

• Fenton reaction

background image

41

Formation of Free Radicals

• Nitric Oxide (NO)

– produced by endothelial cells, macrophages,

neurons …

– can act as a free radical or be converted to

• ONOO

-

, NO

2

• & NO

3-

• Radiant energy (UV light, ionizing radiation)
• H

2

O  OH• + H•

• Enzymatic metabolism of chemical or drugs

by

– CCl

4

P-450 oxidase CCl

3

background image

42

Effect of Free Radicals

• Lipid peroxidation of membranes

– double bonds of unsaturated fatty acids

of membrane lipids are attacked by ROS

(especially OH•)  H

2

O

2

 autocatalytic

reaction  severe damage

background image

43

Effect of Free Radicals

• Oxidative modification of proteins

– oxidation of amino acid residues on protein

side chains  protein-protein x-linkages

– oxidation of amino acid residues on protein

backbone  fragmentation

– oxidative modyfication enhances protein

degradation by peroxisomes  loss of
crical enzymes

background image

44

Removal of Free Radicals

• Spontaneous degradation
• Antioxidants

– block formation or inactivate ROS
– Vit. E & A, ascorbic acid, glutathione

• Metal binding proteins

– transferrin, ceruloplasmin, lactoferin

background image

45

Removal of Free Radicals

• Enzymes

– Catalase (within peroxisomes)

• 2H

2

O

2

 2H

2

O + O

2

– Superoxide dismutase (SOD)

• 2O

2

• +2H  H

2

O

2

+ O

2

– Glutathione peroxidase

• H

2

O

2

+ 2GSH  GSSG = 2H

2

O

• 2OH• + 2GSH  GSSG + 2H

2

O

background image

46

Free Radicals

background image

47

Acetaminophen (Tylenol)

Toxicity

• Large doses  depletion GSH

– accumulation of ROS (H

2

O

2

, OH•) 

oxidative damage, lipid peroxidation

• major cause of injury

– accumulation toxic metabolite

• destroys nucleophilic macromolecules, binds

proteins & nucleid acids

• Massive hepatic necrosis 3-5 days after

ingestion

– can be reduced by antuoxidant adminitration

background image

48

Acetaminophen Toxicity

Liver

background image

49

Reversible Cell Injury

(Degeneration)

vs. Necrosis

background image

50

Reversible Cell Injury

(Degeneration)

Electron microscopie change

• Endoplastic reticulum swelling
• Ribosome detachment endoplasmic

reticulum

• Mitochondria swelling
• Blebs at cell surface
• Loss of microvilli
• Early clumping of nuclear

background image

51

Reversible Cell Injury

(Degeneration)

Light Microscopy

• Cell swelling (hydropic change /

vacuolar degeneration)

– Cells incapable of maintaining ionic /

fluid homeostasis

– First manifestation of almost all forrms of

cell injury

– Microscopie

•swollen cell w / small clear vacuoles in

cytoplasm

– distended pinched-off ER

background image

52

Cell swelling

swollen cells, vacuoles within cytoplasm

background image

53

Reversible Cell Injury

(Degeneration)

Light Microscopy

• Fatty change

– Hypoxic, metabolic & toxic injury in cells

involvedon fat metabolism

• hepatocytes, myocardial cells

– Microscopie

• small & large lipid vacuoles in cytoplasma

background image

54

Fatty Change Liver

background image

55

Fatty change liver


Document Outline


Wyszukiwarka

Podobne podstrony:
W02(Patomorfologia) II Lek
W03(Patomorfologia) II Lek
zagadnienia A, II lek, biofizyka
2.Organizacja i czynność pól czuciowych kory mózgowej, II lek, Fizjologia, !Fizjo, III
pytania- na biofizyke, II lek, biofizyka
patomorfa exam lek
1. Transport tlenu, II lek, Fizjologia, !Krew, III Transport gazów przez krew
6.Okolice kojarzeniowe kory mózgu i ich znaczenie, II lek, Fizjologia, !Fizjo, III
1.Organizacja i czynność pól ruchowych kory mózgowej, II lek, Fizjologia, !Fizjo, III
10.Zróżnicowanie płciowe mózgu, II lek, Fizjologia, !Fizjo, III
1.Właściwości i czynności receptorów czuciowych, II lek, Fizjologia, !Fizjo, I
2 i 3.Przekazywanie impulsów czuciowych do OUN Prawa, II lek, Fizjologia, !Fizjo, I
8.Czynność bioelektryczna mózg; rodzaje fal mózgowych, II lek, Fizjologia, !Fizjo, III
CII opr, II lek, biofizyka
zag lek10, II lek, biofizyka
a2 pytania, II lek, biofizyka
3 i 4Czynność kory wzrokowej i słuchowej, II lek, Fizjologia, !Fizjo, III

więcej podobnych podstron