background image

P

 

K

 

M  

II

gwinty, śruby,

mechanizmy śrubowe

background image

Połączenia gwintowe 

Ogólna charakterystyka połączeń 

gwintowych

Połączenia gwintowe to połączenia cierno-

kształtowe, rozłączne.

Zasadniczym elementem połączenia gwintowego 

jest łącznik, składający się ze śruby i nakrętki

Skręcenie ze sobą śruby i nakrętki tworzy 

połączenie gwintowe.

Połączenia gwintowe dzieli się na:

pośrednie – części maszyn łączy się za pomocą 

łącznika, rolę nakrętki może również spełniać 

gwintowany otwór w jednej z części;

bezpośrednie – gwint jest wykonany na łączonych 

częściach.

background image

Połączenia gwintowe

• a),b) połączenia pośrednie
• c) połączenie bezpośrednie
• d) schemat mechanizmu śrubowego

background image

M. Dietrich – Podstawy Budowy Maszyn

background image

1. Korpus 
nakrętki

2. Korpus 
śruby 

3. Nakrętka 
sprężysta

4. Śruba 
napinająca

5. Pierścień 
oporowy

6. Śruba 
standardowa

M – gwint 
główny

Dokręcanie śrub napinających (poz. 4) wywołuje nacisk na pierścień oporowy (poz. 5). 
Suma sił wywołanych przez śruby napinające składa się na łączną siłę rozciągającą 
rdzeń śruby. 

Podczas wkręcania śrub napinających, wraz ze zwiększającym się obciążeniem, 
elementy Superbolt odkształcają się w taki sposób, że wszystkie nitki gwintu 
głównego są obciążone równomiernie. 

background image

Podstawowe cechy systemu Superbolt: 
niskie momenty dokręcania - max. 860 Nm; 
dowolne średnice i zarysy gwintów; 
wysoka trwałość i niezawodność; 
montaż w miejsce elementów standardowych; 
zakres temperatur pracy od -250 do 630°C.

• Korzyści ze stosowania elementów systemu Superbolt: 

• brak naprężeń skręcających rdzeń śruby i równomierne obciążenie 

wszystkich nitek gwintu - przenoszenie wyższych naprężeń poosiowych przy 

tej samej średnicy gwintu głównego, możliwość zastosowania elementów o 

mniejszych gabarytach; 

• brak ruchu obrotowego obciążonej nakrętki - wielokrotny montaż i demontaż 

bez oznak zużycia nitek gwintu głównego; 

• średnica śrub napinających wielokrotnie mniejsza od średnicy gwintu 

głównego - moment dokręcania śrub napinających od kilkunastu do 

kilkudziesięciu razy mniejszy od momentu potrzebnego do wywołania 

analogicznego naprężenia w klasycznym połączeniu gwintowym; 

• kompensacja nieprostopadłości osi śruby do powierzchni oporowej. 

• W połączeniach gwintowych napinanych elementami systemu Superbolt 

mogą występować naprężenia wyższe od występujących w połączeniach 

klasycznych - zaleca się zastępowanie nakrętek standardowych sprężystymi 

nakrętkami Superbolt. 

background image

d

P

podstawowe parametry linii śrubowej – równia pochyła 

2

tg

d

P

d

- średnica 
gwintu

  (nominalna)

d

2

- średnica 
podziałowa

P

- skok gwintu

- pochylenie 
linii śrubowej

d

2

background image

Gwint walcowy 

Połączenia spoczynkowe i 
ruchowe

Gwint stożkowy 

Tylko połączenia spoczynkowe 
– umożliwia regulację 
nacisków międzyzwojnych, 
skasowanie luzów i uzyskanie 
szczelności – zastosowanie w 
przewodach rurowych 

Rodzaje gwintów

background image

Rodzaje gwintów

background image

Rodzaje gwintów (trójkątne, prostokątne, 
trapezowe, okrągłe)

background image

Gwint prawy – powszechnie 
stosowany 

Gwint lewy – rzadziej stosowany, 
np. śruba rzymska, zawory, gdy 
użycie gwintu prawego sprzyja 
luzowaniu się złącza.

Gwint pojedynczy - powszechnie 
stosowany 

Gwint wielokrotny (podziałka 
gwintu) – mechanizmy, gdy 
wymagana jest duża sprawność 
mechanizmu.

Gwint symetryczny- zmienny 
kierunek obciążenia.

Gwint niesymetryczny – 
jednokierunkowe obciążenie, w 
mechanizmach o wymaganej dużej 
sprawności.

background image

Gwint zwykły – normalny skok P – najczęściej występuje

Gwint grubozwojny – duży skok P – gdy o wytrzymałości 
złącza decydują naciski na zwoje, a nie wytrzymałość 
rdzenia śruby, duże obciążenia.

Gwint drobnozwojny – mały skok P – większa 
wytrzymałość statyczna i zmęczeniowa rdzenia śruby, 
lepiej zabezpiecza złącze przed luzowaniem się, ale 
wymaga większej dokładności – efekt karbu 
wielokrotnego. Połączenia regulujące wzajemne 
położenie elementów.

Gwint okrągły – minimalizacja koncentracji naprężeń

background image

Połączenia ruchowe – odporność na 
zużycie, duża sprawność. Nie samohamowne 
i samohamowne.

Samohamowność połączenia gwintowego 
(np. gwinty metryczne) 

Umowny kąt pozornego tarcia

   

Połączenia spoczynkowe – wywołanie 
dużego nacisku w polu styku elementów 
łączonych, zabezpieczenie przed luzowaniem 
się złącza…Samohamowne

Połączenia szczelne – ciasne pasowania, 
gwinty stożkowe.

cos

arctg

background image

Gwint toczny

Bardzo duża sprawność, mogą przenosić duże 
obciążenia.

Zastosowania: podnośniki, napędy sterów w 
samolotach, mechanizmy chowania i wypuszczania 
podwozia, mechanizmy sterowania w samochodach, 
łóżkach szpitalnych …

background image
background image

podstawowe rodzaje gwintów

nazwa

skró

t

oznaczen

ie

opis 

dodatkowy

metryczny 

zwykły

M

M24

gwinty trójkątne

o kącie zarysu 

2=60°

metryczny 

drobnozwojny

M24x1,5

calowy 

(Whitworth’a)

-

3/4”

kąt zarysu 

2=55°

rurowy

R

R3”

cylindryczne lub 

stożkowe

trapezowy 

symetryczny

Tr

Tr48x8

kąt zarysu 

2=30°

trapezowy 

niesymetryczn

y

S

S48x8

kąty zarysu

r

=3°; 

p

=30°

background image

Wybrane oznaczenia rodzajów gwintów

BSF - gwint calowy Whitwotha, drobnozwojny, 
BSW - gwint calowy Whitwortha, zwykły, 
E - gwint Edisona, sprzęt elektrotechniczny, 
G - gwint rurowy Whitwortha, walcowy, 
M - gwint metryczny zwykły i drobnozwojny, 
NPT - gwint rurowy Briggsa, stożkowy 
Pg - gwint specjalny instalacyjny, pancerny, 
R - gwint rurowy Whitwortha, stożkowy, zewnętrzny, 
Rc - gwint rurowy Whitwortha, stożkowy, wewnętrzny, 
Rd - gwint okrągły, duża wytrzymałość rdzenia, mała 
wrażliwość na zanieczyszczenia, np. w ściągach wagonów, 
w hakach dźwigów, przewodach pożarniczych…
Rp - gwint rurowy Whitwortha, walcowy wewnętrzny, 
RW, FG - gwint rowerowy, 
S - gwint trapezowy niesymetryczny, 
Tr - gwint trapezowy symetryczny, 
UN - gwinty zunifikowane o skoku uprzywilejowanym, 
UNC - gwint calowy, zunifikowany, zwykły, 
UNEF - gwint calowy, zunifikowany, bardzo drobnozwojny, 
UNF - gwint calowy, zunifikowany, drobnozwojny, 
UNS - gwinty zunifikowane specjalne, 
Ven, Vg - gwint wentylowy, 
W - gwint stożkowy do zaworów gazowych, 

background image

gwint metryczny zwykły

background image

Gwinty są znormalizowane przez Polską Normę. 
Definiuje się w niej gwinty metryczne, to znaczy takie, 
których średnica gwintu w milimetrach jest 
typoszeregiem liczb naturalnych lub ich ułamków 
dziesiętnych w przypadku gwintów drobnych. 

Zgodnie z tym gwint metryczny koduje się Mn, gdzie n 
to średnica gwintu w milimetrach np. M5, M20. 

W gwintach, w których skok P jest inny niż by to 
wynikało z ogólnej zasady, dodatkowo specyfikuje się 
ten parametr w kodzie gwintu metrycznego, np. 
M20x2 (gwint metryczny o średnicy d = 20 mm i skoku 
P = 2mm), M20x1.5M20x1M20x0.75M20 
posiada normalny skok P = 2,5 mm. 

background image

szereg gwintów metrycznych

d=D

szeregi średnic

P

d

2

=

D

2

d

1

=

D

1

d

3

r

H

mm

2

gwint

1

2

3

zwy-

kły

drobno

-

zwojny

2

4

3

 

2

1,5

1

0,75

22,05

1

22,701
23,026
23,351
23,513

20,75

2

21,835
22,376
22,918
23,188

20,31

9

21,546
22,160
22,773
23,080

0,433
0,259
0,217
0,144
0,108

1,624
1,083
0,812
0,541
0,406

324
365
386
407
419

25

2

1,5

1

23,701
24,026
24,351

22,835
23,376
23,918

22,546
23,160
23,773

0,289
0,217
0,144

1,083
0,812
0,541

399
421
444

26

1,5

25,026 24,376 24,160

0,217

0,812

458

27

3

  
2

1,5

1

0,75

25,051
25,701
26,026
26,351
26,513

23,752
24,835
25,376
25,918
26,188

23,319
24,546
25,160
25,773
26,080

0,433
0,259
0,217
0,144
0,108

1,624
1,083
0,812
0,541
0,406

427
473
497
522
535

4

2

3

d

background image
background image
background image
background image

Mikołaj Piotrowski – pr. mgr.

γ

background image

Tolerancje i pasowania gwintów – w głąb 
materiału

Suwliwe – połączenia 
spoczynkowe, wymagane 
częste złącznie i 
rozłączanie

Ciasne – połączenia 
spoczynkowe, wymagane 
duże siły tarcia, 
szczelność

Luźne – polączenia 
ruchowe

background image

Technologia gwintów

Gwintowanie (narzynki i gwintowniki)

Frezowanie

Toczenie

Wygniatanie (walcowanie) – rolki, drewno, 
tworzywa sztuczne

Wytłaczanie (np. gwintu E w mosiężnych 
rurkach)

Odlewanie pod ciśnieniem – metale nieżelazne, 
tworzywa sztuczne

background image

M. Dietrich – Podstawy Budowy Maszyn

background image

T + Q sin γ = Hp cos γ

T = N μ = (Q cos γ + Hp sin γ) μ

Hp = Q tg (γ + ρ)  przy podnoszeniu

μ = tg ρ

Ho = Q tg (γ - ρ)  przy opuszczaniu

Jeżeli γ > ρ, czyli Ho > 0 to gwint jest 
niesamohamowny !!!

Jeżeli γ < ρ, czyli Ho < 0 to gwint jest 
samohamowny !!!

background image

Dla gwintów nieprostokątnych – 
wzrost siły tarcia: 

Hp = Q tg (γ + ρ’)  przy podnoszeniu

Ho = Q tg (γ – ρ’)  przy opuszczaniu

cos

'

'

tg

Ms = 0.5 d

2

 Q tg (γ ± ρ’)

Moment nakrętka – śruba:

background image

Sprawność (stosunek pracy 
użytecznej do pracy włożonej): 

cos

'

'

tg

'

tg

tg

2

S

M

P

Q

P – skok gwintu

P = π d tg γ

Ruch do góry:

tg

'

tg

2

P

Q

M

S

Ruch w dół 
(niesamohamowne):

background image

obliczenia gwintów - wprowadzenie

całkowity moment oporów na 
śrubie:

n

n

D

d

Q

M

'

tg

2

2

- siła osiowa

d

2

- średnia średnica gwintu

γ - pochylenie linii śrubowej

ρ’ - kąt tarcia na gwincie

D

n

- średnica tarcia nakrętki

μ

n

- współczynnik tarcia nakrętki

cos

'

'

tg

background image

obliczenia gwintów - wprowadzenie

sprawność gwintu:

'

tg

tg

γ - pochylenie linii 

śrubowej

ρ’ - kąt tarcia na gwincie

2

'

45

opt

2

'

45

tg

2

'

45

tg

max

dla     ρ’ = 5°40’  

(μ=0,1)

background image
background image

obciążenie poszczególnych nitek gwintu

231

168

121

87

65

50

41

37

180

121

81

65

53

0

100

200

1

2

3

4

5

6

7

8

5 zwojów
8 zwojów

obciążenie

 

%

background image

optymalizacja kształtu nakrętki

Q

Q

Q

Q

background image

wytrzymałość gwintu

1. rozciąganie rdzenia śruby

2. nacisk na powierzchnię gwintu

3. ścinanie gwintu

r

r

k

d

k

A

Q

4

2

3

3

dop

dop

p

p

P

m

d

d

p

i

A

Q

4

)

(

2

1

2

t

t

t

t

k

h

d

P

m

k

A

Q

1

background image

1. warunek nacisku na powierzchnię gwintu

2. warunek ścinania gwintu

wytrzymałość gwintu – wysokość nakrętki

d

m

p

P

m

d

d

k

d

Q

dop

r

67

,

0

4

)

(

4

2

1

2

2

3

dop

p

d

d

P

Q

m

2

1

2

4

t

t

k

h

d

P

Q

m

1

d

m

k

P

m

h

d

k

d

Q

t

t

r

48

,

0

4

1

2

3

background image

sposoby obciążenia śruby

1. czyste rozciąganie (ściskanie) siłą osiową

(np. hak)

2. rozciąganie (ściskanie) siłą osiową oraz 

skręcanie momentem skręcającym

(głównie mechanizmy gwintowe np. śruba pociągowa, 

wrzeciono zaworu)

3. obciążenie wstępne rozciągającą siłą 

osiową

i momentem skręcającym oraz obciążenie 

robocze siłą osiową (stałą lub zmienną)

(typowe złącze śrubowe, np. pokrywka obciążona 

ciśnieniem)

4. obciążenie wstępne rozciągającą siłą 

osiową

i momentem skręcającym oraz obciążenie 

robocze siłą poprzeczną

(typowe złącza śrubowe np. sprzęgła kołnierzowe)

background image

sposoby obciążenia śruby

1. czyste rozciąganie (ściskanie) siłą osiową

r

r

k

d

Q

4

2

3

obciążenia statyczne:

obciążenia zmęczeniowe:

5

,

2

3

,

1

;

e

e

e

r

x

x

R

k

5

5

,

2

;

z

z

rj

r

x

x

Z

k

background image

sposoby obciążenia śruby

2. rozciąganie (ściskanie) siłą osiową oraz 

skręcanie momentem skręcającym 

4

2

3

d

Q

r

s

r

z

k

k

k





2

2

2

16

'

tg

5

,

0

3

3

2

d

Q

d

background image

sposoby obciążenia śruby

4. obciążenie wstępne rozciągającą siłą 

osiową

i momentem skręcającym oraz obciążenie 

robocze siłą poprzeczną 

•śruby pasowane:

•śruby z luzem:

t

k

d

T

4

2

dop

p

d

g

T

p

r

w

k

d

Q

T

4

2

3

background image

ZADANIE 1:

1.Całkowity  moment  potrzebny  do  podniesienia 

masy  jeśli  wsp.  tarcia  na  gwincie  wynosi 

 

=

 

0,1, 

zaś  na  głowicy  podnośnika 

o

=0,15.  Średnica 

d

o

=30 mm;

2.Wykresy składowych obciążenia śruby;

3.Wysokość nakrętki m, jeśli dopuszczalne naciski na 

zwojach gwintu wynoszą p

dop

 = 12 MPa;

4.Maksymalne naprężenia w śrubie

5. Sprawność

Podnośnik  ze  śrubą  z  gwintem  S40x6 
wykonaną  ze  stali  E360  podnosi  masę  M  
4000 kg.

Wyznaczyć:

H=1,587911·P;   H

1

=0,75 ·P;    H

3

=H

1

+a

c;

   a

c

=0,117767 ·P;    d=D;    d

2

=d-0,75 ·P;   

d

3

=d-2 ·H

3

;   D

1

=d-1,5·P

background image

sposoby obciążenia śruby

3. obciążenie wstępne rozciągającą siłą 

osiową

(i momentem skręcającym) oraz 

obciążenie robocze siłą osiową (stałą lub 

zmienną) 

background image

Δ

l

k

Δ

l

s

Q

Q

w

δ

ws

β

δ

w

k

α

α=arctg 
C

s

δ

ps 

= δ

pk

Q

k

Q

s

ΔQ

p

ΔQ

ps

ΔQ

p

k

δ

w

k

β

β=arctg 
C

k

śruby z naciągiem wstępnym

background image

Δ

l

α=arctg 
C

s

Q

Q

w

β

ΔQ

p

ΔQ

ps

ΔQ

pk

β=arctg 
C

k

śruby z naciągiem wstępnym 

– wzrost podatności śruby

β

ΔQ

p

ΔQ

ps1

ΔQ

pk1

ΔQ’

ps

 < 

0

ΔQ’

pk

 > 0

α

1

α

background image

Δ

l

α=arctg 
C

s

Q

β

α

ΔQ

p

ΔQ

ps

ΔQ

pk

β=arctg 
C

k

śruby z naciągiem wstępnym 

– wzrost podatności konstrukcji

β

2

ΔQ

p

ΔQ

ps2

ΔQ

pk2

ΔQ’’

ps

 > 

0

ΔQ’’

pk

 < 0

Q

w

background image

śruby z naciągiem wstępnym 

– określanie sztywności

s

s

s

s

s

s

s

l

E

A

E

A

l

Q

Q

l

Q

tg

i

ki

ki

ki

i

ki

ki

ki

i

ki

E

A

l

E

A

l

Q

Q

l

Q

1

tg

background image

bez podkładki

z podkładką

śruby z naciągiem wstępnym 

– określanie sztywności

g

1

+S

g

1

+S

g

2

+S

g

2

+S

(g

1

+g

2

)/2+

S

S

'

'

''

''

1

2

p

1

2

background image

ZADANIE 2:

Okucie  przedstawione  na  rysunku  przymocowano  do  podłoża  dwiema 
stalowymi  śrubami  M12x1,5  (E

s

=2,1·10

5

  MPa),  o  długości  czynnej  l=20  mm, 

które  podczas  montażu  dokręcono,  wywołując  w  każdej  siłę  naciągu 
wstępnego  Q

w

=1,5  kN.  Okucie  posadowiono  na  podłożu  na  dwóch 

podkładkach o grubości g=5 mm, module Younga E

p

=1·10

3

 MPa i powierzchni 

przekroju  A

p

=15·10

-4

  m

2

.  Zakładając  nieodkształcalność  okucia  oraz  podłoża 

wyznaczyć:

1. Maksymalną  siłę  Q

d1

  którą  można  obciążyć 

okucie  aby  nie  powstał  luz  pomiędzy  okuciem 

a podkładką;

2. Maksymalną  siłę  Q

d2

  którą  można  obciążyć 

okucie  aby  nie  powstał  luz  pomiędzy  okuciem 

a łbem śruby;

3. Wartość  naciągu  wstępnego  śrub  Q

wT

  jeśli  po 

wprowadzeniu 

naciągu 

wstępnego 

Q

w

 

temperatura  całej  konstrukcji  wzrośnie  o 

ΔT=50°C,  zaś  wsp.  rozszerzalności  liniowej 

okucia  i  śruby  wynosi  α

s

=12·10

-6

  1/ºC,  a 

podkładki α

p

=24·10

-6

 1/ºC

Przyjąć średnicę 
rdzenia śruby 
d

r

=0,8·d

background image

ZADANIE 3:

Pokrywa (1) otworu w zbiorniku ciśnieniowym (2) dokręcona jest za pomocą 
N=16  śrub  M16,  jak  to  przedstawiono  na  rysunku.  Śruby  dokręcone  zostały 
momentem  M

s

=10  Nm  każda.  Po  zmontowaniu  zbiornik  wypełniony  został 

parą  po  ciśnieniem.  Współczynnik  tarcia  pomiędzy  śrubą  a  nakrętką  μ=0,1; 
pomiędzy nakrętką a podkładką μ

n

=0. Obliczyć:

1. Siłę  naciągu  wstępnego  każdej  ze 

śrub.

2. Maksymalne 

ciśnienie 

dopuszczalne
w  zbiorniku  p

max

  takie,  aby  na 

powierzchni  uszczelki  pozostały 
naciski 

resztkowe 

p

u

=2

 

MPa. 

Pominąć  wpływ  ciśnienia  pary 
działającej na uszczelkę.

3. Maksymalne 

naprężenia 

rozciągające
w śrubie  σ

r

 przy działaniu ciśnienia 

p

max

.

Założyć,  że  cała  uszczelka  o  module 
Younga 

E

u

=5·10

3

 

MPa 

podlega 

jednakowemu  ściskaniu,  moduł  Younga 
śruby wynosi E

s

=2,1·10

5

 MPa, zaś zbiornik 

i pokrywa są nieodkształcalne.

D

0

=280 mm;    D

w

=220 mm;    D

z

=320 mm;    D

uw

=245 mm;    D

uz

=315 mm;

g

1

=12 mm;    g

2

=14 mm;    g

u

=3 mm;    d

0

=18 mm;

dane gwintu:  d=16 mm;    P=2 mm;   d

2

=14.701 mm;    d

1

=13,835 mm;    

d

3

=13,546 mm 

1

2

background image

ZADANIE 4:

Pokazany na rysunku mechanizm śrubowy składa się z dwóch płyt 1 i 2 oraz 
śruby o gwintach jednozwojnych Tr32x6. Gwinty są odpowiednio prawy i lewy 
jak zaznaczono na rysunku. Wymiary gwintu podane są na rysunku i w tabeli, 
współczynnik tarcia na powierzchni gwintu μ=0,1.
1. Wyznaczyć  moment  M

s1

  jakim  należy  obracać  śrubę  aby  siła  normalna  w 

śrubie wynosiła Q

1

=-20 kN?

2. Narysować wykres siły i momentu skręcającego w śrubie.
3. Wyznaczyć maksymalne naprężenia zredukowane w śrubie.
4. Jakie  muszą  być  minimalne  grubości  płyt  g  aby  naciski  na  powierzchnię 

gwintów nie przekroczyły p

dop

=20 MPa?

5. Jak zmieni się rozwiązanie jeśli oba gwinty będą prawoskrętne?

d

P

d

2

=D

2

d

3

D

1

D

32

6

29

25

26

33

1

2

gwint 
prawy

gwint lewy

M

s

g

background image

ZADANIE 5:

Prasa  tunelowa  o  schemacie  pokazanym  na  rysunku  składa  się
z  dwóch  kolumn  (1),  dwóch  trawers  (2)  i  dwóch  śrub  (3).  Wymiary  śrub: 
d=120  mm,  d

3

=100  mm.  Montaż  odbywa  się  tak,  że  śruby  podgrzane  do 

temp.  T

1

=120°  wkłada  się  w  otwory  i  dokręca  się  nakrętki  do  skasowania 

luzów.  Studzenie  śrub  powoduje  powstanie  naciągu  wstępnego  w  układzie. 
Temperatura prasy w trakcie pracy T

2

=20°. Materiałem kolumn i trawers jest 

żeliwo  Żl-35  (E

z

=1·10

5

  MPa,  α

z

=  10·10

-6

  1/°C).  Śruby  wykonano  ze  stali  45 

(E

s

=2·10

5

 MPa, α

s

= 120·10

-6

 1/°C). 

Wyznaczyć  zakres  zmienności  sił  w  śrubach  gdy  siła  Q

d

  zmienia  się  od

0 do 1000 kN.

Uwaga:  dla  uproszczenia  przyjąć  że  trawersy  są  idealnie  sztywne  na  zginanie  i 

ściskanie.


Document Outline