P
K
M
II
gwinty, śruby,
mechanizmy śrubowe
Połączenia gwintowe
Ogólna charakterystyka połączeń
gwintowych
•
Połączenia gwintowe to połączenia cierno-
kształtowe, rozłączne.
•
Zasadniczym elementem połączenia gwintowego
jest łącznik, składający się ze śruby i nakrętki.
Skręcenie ze sobą śruby i nakrętki tworzy
połączenie gwintowe.
•
Połączenia gwintowe dzieli się na:
•
pośrednie – części maszyn łączy się za pomocą
łącznika, rolę nakrętki może również spełniać
gwintowany otwór w jednej z części;
•
bezpośrednie – gwint jest wykonany na łączonych
częściach.
Połączenia gwintowe
• a),b) połączenia pośrednie
• c) połączenie bezpośrednie
• d) schemat mechanizmu śrubowego
M. Dietrich – Podstawy Budowy Maszyn
1. Korpus
nakrętki
2. Korpus
śruby
3. Nakrętka
sprężysta
4. Śruba
napinająca
5. Pierścień
oporowy
6. Śruba
standardowa
M – gwint
główny
Dokręcanie śrub napinających (poz. 4) wywołuje nacisk na pierścień oporowy (poz. 5).
Suma sił wywołanych przez śruby napinające składa się na łączną siłę rozciągającą
rdzeń śruby.
Podczas wkręcania śrub napinających, wraz ze zwiększającym się obciążeniem,
elementy Superbolt odkształcają się w taki sposób, że wszystkie nitki gwintu
głównego są obciążone równomiernie.
Podstawowe cechy systemu Superbolt:
niskie momenty dokręcania - max. 860 Nm;
dowolne średnice i zarysy gwintów;
wysoka trwałość i niezawodność;
montaż w miejsce elementów standardowych;
zakres temperatur pracy od -250 do 630°C.
• Korzyści ze stosowania elementów systemu Superbolt:
• brak naprężeń skręcających rdzeń śruby i równomierne obciążenie
wszystkich nitek gwintu - przenoszenie wyższych naprężeń poosiowych przy
tej samej średnicy gwintu głównego, możliwość zastosowania elementów o
mniejszych gabarytach;
• brak ruchu obrotowego obciążonej nakrętki - wielokrotny montaż i demontaż
bez oznak zużycia nitek gwintu głównego;
• średnica śrub napinających wielokrotnie mniejsza od średnicy gwintu
głównego - moment dokręcania śrub napinających od kilkunastu do
kilkudziesięciu razy mniejszy od momentu potrzebnego do wywołania
analogicznego naprężenia w klasycznym połączeniu gwintowym;
• kompensacja nieprostopadłości osi śruby do powierzchni oporowej.
• W połączeniach gwintowych napinanych elementami systemu Superbolt
mogą występować naprężenia wyższe od występujących w połączeniach
klasycznych - zaleca się zastępowanie nakrętek standardowych sprężystymi
nakrętkami Superbolt.
d
P
podstawowe parametry linii śrubowej – równia pochyła
2
tg
d
P
d
- średnica
gwintu
(nominalna)
d
2
- średnica
podziałowa
P
- skok gwintu
- pochylenie
linii śrubowej
d
2
Gwint walcowy
Połączenia spoczynkowe i
ruchowe
Gwint stożkowy
Tylko połączenia spoczynkowe
– umożliwia regulację
nacisków międzyzwojnych,
skasowanie luzów i uzyskanie
szczelności – zastosowanie w
przewodach rurowych
Rodzaje gwintów
Rodzaje gwintów
Rodzaje gwintów (trójkątne, prostokątne,
trapezowe, okrągłe)
Gwint prawy – powszechnie
stosowany
Gwint lewy – rzadziej stosowany,
np. śruba rzymska, zawory, gdy
użycie gwintu prawego sprzyja
luzowaniu się złącza.
Gwint pojedynczy - powszechnie
stosowany
Gwint wielokrotny (podziałka
gwintu) – mechanizmy, gdy
wymagana jest duża sprawność
mechanizmu.
Gwint symetryczny- zmienny
kierunek obciążenia.
Gwint niesymetryczny –
jednokierunkowe obciążenie, w
mechanizmach o wymaganej dużej
sprawności.
Gwint zwykły – normalny skok P – najczęściej występuje
Gwint grubozwojny – duży skok P – gdy o wytrzymałości
złącza decydują naciski na zwoje, a nie wytrzymałość
rdzenia śruby, duże obciążenia.
Gwint drobnozwojny – mały skok P – większa
wytrzymałość statyczna i zmęczeniowa rdzenia śruby,
lepiej zabezpiecza złącze przed luzowaniem się, ale
wymaga większej dokładności – efekt karbu
wielokrotnego. Połączenia regulujące wzajemne
położenie elementów.
Gwint okrągły – minimalizacja koncentracji naprężeń
Połączenia ruchowe – odporność na
zużycie, duża sprawność. Nie samohamowne
i samohamowne.
Samohamowność połączenia gwintowego
(np. gwinty metryczne)
Umowny kąt pozornego tarcia
Połączenia spoczynkowe – wywołanie
dużego nacisku w polu styku elementów
łączonych, zabezpieczenie przed luzowaniem
się złącza…Samohamowne
Połączenia szczelne – ciasne pasowania,
gwinty stożkowe.
cos
arctg
Gwint toczny
Bardzo duża sprawność, mogą przenosić duże
obciążenia.
Zastosowania: podnośniki, napędy sterów w
samolotach, mechanizmy chowania i wypuszczania
podwozia, mechanizmy sterowania w samochodach,
łóżkach szpitalnych …
podstawowe rodzaje gwintów
nazwa
skró
t
oznaczen
ie
opis
dodatkowy
metryczny
zwykły
M
M24
gwinty trójkątne
o kącie zarysu
2=60°
metryczny
drobnozwojny
M24x1,5
calowy
(Whitworth’a)
-
3/4”
kąt zarysu
2=55°
rurowy
R
R3”
cylindryczne lub
stożkowe
trapezowy
symetryczny
Tr
Tr48x8
kąt zarysu
2=30°
trapezowy
niesymetryczn
y
S
S48x8
kąty zarysu
r
=3°;
p
=30°
Wybrane oznaczenia rodzajów gwintów
BSF - gwint calowy Whitwotha, drobnozwojny,
BSW - gwint calowy Whitwortha, zwykły,
E - gwint Edisona, sprzęt elektrotechniczny,
G - gwint rurowy Whitwortha, walcowy,
M - gwint metryczny zwykły i drobnozwojny,
NPT - gwint rurowy Briggsa, stożkowy
Pg - gwint specjalny instalacyjny, pancerny,
R - gwint rurowy Whitwortha, stożkowy, zewnętrzny,
Rc - gwint rurowy Whitwortha, stożkowy, wewnętrzny,
Rd - gwint okrągły, duża wytrzymałość rdzenia, mała
wrażliwość na zanieczyszczenia, np. w ściągach wagonów,
w hakach dźwigów, przewodach pożarniczych…
Rp - gwint rurowy Whitwortha, walcowy wewnętrzny,
RW, FG - gwint rowerowy,
S - gwint trapezowy niesymetryczny,
Tr - gwint trapezowy symetryczny,
UN - gwinty zunifikowane o skoku uprzywilejowanym,
UNC - gwint calowy, zunifikowany, zwykły,
UNEF - gwint calowy, zunifikowany, bardzo drobnozwojny,
UNF - gwint calowy, zunifikowany, drobnozwojny,
UNS - gwinty zunifikowane specjalne,
Ven, Vg - gwint wentylowy,
W - gwint stożkowy do zaworów gazowych,
gwint metryczny zwykły
Gwinty są znormalizowane przez Polską Normę.
Definiuje się w niej gwinty metryczne, to znaczy takie,
których średnica gwintu w milimetrach jest
typoszeregiem liczb naturalnych lub ich ułamków
dziesiętnych w przypadku gwintów drobnych.
Zgodnie z tym gwint metryczny koduje się Mn, gdzie n
to średnica gwintu w milimetrach np. M5, M20.
W gwintach, w których skok P jest inny niż by to
wynikało z ogólnej zasady, dodatkowo specyfikuje się
ten parametr w kodzie gwintu metrycznego, np.
M20x2 (gwint metryczny o średnicy d = 20 mm i skoku
P = 2mm), M20x1.5, M20x1, M20x0.75. M20
posiada normalny skok P = 2,5 mm.
szereg gwintów metrycznych
d=D
szeregi średnic
P
d
2
=
D
2
d
1
=
D
1
d
3
r
H
mm
2
gwint
1
2
3
zwy-
kły
drobno
-
zwojny
2
4
3
2
1,5
1
0,75
22,05
1
22,701
23,026
23,351
23,513
20,75
2
21,835
22,376
22,918
23,188
20,31
9
21,546
22,160
22,773
23,080
0,433
0,259
0,217
0,144
0,108
1,624
1,083
0,812
0,541
0,406
324
365
386
407
419
25
2
1,5
1
23,701
24,026
24,351
22,835
23,376
23,918
22,546
23,160
23,773
0,289
0,217
0,144
1,083
0,812
0,541
399
421
444
26
1,5
25,026 24,376 24,160
0,217
0,812
458
27
3
2
1,5
1
0,75
25,051
25,701
26,026
26,351
26,513
23,752
24,835
25,376
25,918
26,188
23,319
24,546
25,160
25,773
26,080
0,433
0,259
0,217
0,144
0,108
1,624
1,083
0,812
0,541
0,406
427
473
497
522
535
4
2
3
d
Mikołaj Piotrowski – pr. mgr.
γ
Tolerancje i pasowania gwintów – w głąb
materiału
Suwliwe – połączenia
spoczynkowe, wymagane
częste złącznie i
rozłączanie
Ciasne – połączenia
spoczynkowe, wymagane
duże siły tarcia,
szczelność
Luźne – polączenia
ruchowe
Technologia gwintów
Gwintowanie (narzynki i gwintowniki)
Frezowanie
Toczenie
Wygniatanie (walcowanie) – rolki, drewno,
tworzywa sztuczne
Wytłaczanie (np. gwintu E w mosiężnych
rurkach)
Odlewanie pod ciśnieniem – metale nieżelazne,
tworzywa sztuczne
M. Dietrich – Podstawy Budowy Maszyn
T + Q sin γ = Hp cos γ
T = N μ = (Q cos γ + Hp sin γ) μ
Hp = Q tg (γ + ρ) przy podnoszeniu
μ = tg ρ
Ho = Q tg (γ - ρ) przy opuszczaniu
Jeżeli γ > ρ, czyli Ho > 0 to gwint jest
niesamohamowny !!!
Jeżeli γ < ρ, czyli Ho < 0 to gwint jest
samohamowny !!!
Dla gwintów nieprostokątnych –
wzrost siły tarcia:
Hp = Q tg (γ + ρ’) przy podnoszeniu
Ho = Q tg (γ – ρ’) przy opuszczaniu
cos
'
'
tg
Ms = 0.5 d
2
Q tg (γ ± ρ’)
Moment nakrętka – śruba:
Sprawność (stosunek pracy
użytecznej do pracy włożonej):
cos
'
'
tg
'
tg
tg
2
S
M
P
Q
P – skok gwintu
P = π d tg γ
Ruch do góry:
tg
'
tg
2
P
Q
M
S
Ruch w dół
(niesamohamowne):
obliczenia gwintów - wprowadzenie
całkowity moment oporów na
śrubie:
n
n
D
d
Q
M
'
tg
2
2
Q - siła osiowa
d
2
- średnia średnica gwintu
γ - pochylenie linii śrubowej
ρ’ - kąt tarcia na gwincie
D
n
- średnica tarcia nakrętki
μ
n
- współczynnik tarcia nakrętki
cos
'
'
tg
obliczenia gwintów - wprowadzenie
sprawność gwintu:
'
tg
tg
γ - pochylenie linii
śrubowej
ρ’ - kąt tarcia na gwincie
2
'
45
opt
2
'
45
tg
2
'
45
tg
max
dla ρ’ = 5°40’
(μ=0,1)
obciążenie poszczególnych nitek gwintu
231
168
121
87
65
50
41
37
180
121
81
65
53
0
100
200
1
2
3
4
5
6
7
8
5 zwojów
8 zwojów
obciążenie
%
optymalizacja kształtu nakrętki
Q
Q
Q
Q
wytrzymałość gwintu
1. rozciąganie rdzenia śruby
2. nacisk na powierzchnię gwintu
3. ścinanie gwintu
r
r
k
d
k
A
Q
4
2
3
3
dop
dop
p
p
P
m
d
d
p
i
A
Q
4
)
(
2
1
2
t
t
t
t
k
h
d
P
m
k
A
Q
1
1. warunek nacisku na powierzchnię gwintu
2. warunek ścinania gwintu
wytrzymałość gwintu – wysokość nakrętki
d
m
p
P
m
d
d
k
d
Q
dop
r
67
,
0
4
)
(
4
2
1
2
2
3
dop
p
d
d
P
Q
m
2
1
2
4
t
t
k
h
d
P
Q
m
1
d
m
k
P
m
h
d
k
d
Q
t
t
r
48
,
0
4
1
2
3
sposoby obciążenia śruby
1. czyste rozciąganie (ściskanie) siłą osiową
(np. hak)
2. rozciąganie (ściskanie) siłą osiową oraz
skręcanie momentem skręcającym
(głównie mechanizmy gwintowe np. śruba pociągowa,
wrzeciono zaworu)
3. obciążenie wstępne rozciągającą siłą
osiową
i momentem skręcającym oraz obciążenie
robocze siłą osiową (stałą lub zmienną)
(typowe złącze śrubowe, np. pokrywka obciążona
ciśnieniem)
4. obciążenie wstępne rozciągającą siłą
osiową
i momentem skręcającym oraz obciążenie
robocze siłą poprzeczną
(typowe złącza śrubowe np. sprzęgła kołnierzowe)
sposoby obciążenia śruby
1. czyste rozciąganie (ściskanie) siłą osiową
r
r
k
d
Q
4
2
3
obciążenia statyczne:
obciążenia zmęczeniowe:
5
,
2
3
,
1
;
e
e
e
r
x
x
R
k
5
5
,
2
;
z
z
rj
r
x
x
Z
k
sposoby obciążenia śruby
2. rozciąganie (ściskanie) siłą osiową oraz
skręcanie momentem skręcającym
4
2
3
d
Q
r
s
r
z
k
k
k
2
2
2
16
'
tg
5
,
0
3
3
2
d
Q
d
sposoby obciążenia śruby
4. obciążenie wstępne rozciągającą siłą
osiową
i momentem skręcającym oraz obciążenie
robocze siłą poprzeczną
•śruby pasowane:
•śruby z luzem:
t
k
d
T
4
2
dop
p
d
g
T
p
r
w
k
d
Q
T
4
2
3
ZADANIE 1:
1.Całkowity moment potrzebny do podniesienia
masy jeśli wsp. tarcia na gwincie wynosi
=
0,1,
zaś na głowicy podnośnika
o
=0,15. Średnica
d
o
=30 mm;
2.Wykresy składowych obciążenia śruby;
3.Wysokość nakrętki m, jeśli dopuszczalne naciski na
zwojach gwintu wynoszą p
dop
= 12 MPa;
4.Maksymalne naprężenia w śrubie
5. Sprawność
Podnośnik ze śrubą z gwintem S40x6
wykonaną ze stali E360 podnosi masę M =
4000 kg.
Wyznaczyć:
H=1,587911·P; H
1
=0,75 ·P; H
3
=H
1
+a
c;
a
c
=0,117767 ·P; d=D; d
2
=d-0,75 ·P;
d
3
=d-2 ·H
3
; D
1
=d-1,5·P
sposoby obciążenia śruby
3. obciążenie wstępne rozciągającą siłą
osiową
(i momentem skręcającym) oraz
obciążenie robocze siłą osiową (stałą lub
zmienną)
Δ
l
k
Δ
l
s
Q
Q
w
δ
ws
β
δ
w
k
α
α=arctg
C
s
δ
ps
= δ
pk
Q
k
Q
s
ΔQ
p
ΔQ
ps
ΔQ
p
k
δ
w
k
β
β=arctg
C
k
śruby z naciągiem wstępnym
Δ
l
α=arctg
C
s
Q
Q
w
β
ΔQ
p
ΔQ
ps
ΔQ
pk
β=arctg
C
k
śruby z naciągiem wstępnym
– wzrost podatności śruby
β
ΔQ
p
ΔQ
ps1
ΔQ
pk1
ΔQ’
ps
<
0
ΔQ’
pk
> 0
α
1
α
Δ
l
α=arctg
C
s
Q
β
α
ΔQ
p
ΔQ
ps
ΔQ
pk
β=arctg
C
k
śruby z naciągiem wstępnym
– wzrost podatności konstrukcji
β
2
ΔQ
p
ΔQ
ps2
ΔQ
pk2
ΔQ’’
ps
>
0
ΔQ’’
pk
< 0
Q
w
śruby z naciągiem wstępnym
– określanie sztywności
s
s
s
s
s
s
s
l
E
A
E
A
l
Q
Q
l
Q
tg
i
ki
ki
ki
i
ki
ki
ki
i
ki
E
A
l
E
A
l
Q
Q
l
Q
1
tg
bez podkładki
z podkładką
śruby z naciągiem wstępnym
– określanie sztywności
g
1
+S
g
1
+S
g
2
+S
g
2
+S
(g
1
+g
2
)/2+
S
S
g
'
g
'
g
''
g
''
1
2
p
1
2
ZADANIE 2:
Okucie przedstawione na rysunku przymocowano do podłoża dwiema
stalowymi śrubami M12x1,5 (E
s
=2,1·10
5
MPa), o długości czynnej l=20 mm,
które podczas montażu dokręcono, wywołując w każdej siłę naciągu
wstępnego Q
w
=1,5 kN. Okucie posadowiono na podłożu na dwóch
podkładkach o grubości g=5 mm, module Younga E
p
=1·10
3
MPa i powierzchni
przekroju A
p
=15·10
-4
m
2
. Zakładając nieodkształcalność okucia oraz podłoża
wyznaczyć:
1. Maksymalną siłę Q
d1
którą można obciążyć
okucie aby nie powstał luz pomiędzy okuciem
a podkładką;
2. Maksymalną siłę Q
d2
którą można obciążyć
okucie aby nie powstał luz pomiędzy okuciem
a łbem śruby;
3. Wartość naciągu wstępnego śrub Q
wT
jeśli po
wprowadzeniu
naciągu
wstępnego
Q
w
temperatura całej konstrukcji wzrośnie o
ΔT=50°C, zaś wsp. rozszerzalności liniowej
okucia i śruby wynosi α
s
=12·10
-6
1/ºC, a
podkładki α
p
=24·10
-6
1/ºC
Przyjąć średnicę
rdzenia śruby
d
r
=0,8·d
ZADANIE 3:
Pokrywa (1) otworu w zbiorniku ciśnieniowym (2) dokręcona jest za pomocą
N=16 śrub M16, jak to przedstawiono na rysunku. Śruby dokręcone zostały
momentem M
s
=10 Nm każda. Po zmontowaniu zbiornik wypełniony został
parą po ciśnieniem. Współczynnik tarcia pomiędzy śrubą a nakrętką μ=0,1;
pomiędzy nakrętką a podkładką μ
n
=0. Obliczyć:
1. Siłę naciągu wstępnego każdej ze
śrub.
2. Maksymalne
ciśnienie
dopuszczalne
w zbiorniku p
max
takie, aby na
powierzchni uszczelki pozostały
naciski
resztkowe
p
u
=2
MPa.
Pominąć wpływ ciśnienia pary
działającej na uszczelkę.
3. Maksymalne
naprężenia
rozciągające
w śrubie σ
r
przy działaniu ciśnienia
p
max
.
Założyć, że cała uszczelka o module
Younga
E
u
=5·10
3
MPa
podlega
jednakowemu ściskaniu, moduł Younga
śruby wynosi E
s
=2,1·10
5
MPa, zaś zbiornik
i pokrywa są nieodkształcalne.
D
0
=280 mm; D
w
=220 mm; D
z
=320 mm; D
uw
=245 mm; D
uz
=315 mm;
g
1
=12 mm; g
2
=14 mm; g
u
=3 mm; d
0
=18 mm;
dane gwintu: d=16 mm; P=2 mm; d
2
=14.701 mm; d
1
=13,835 mm;
d
3
=13,546 mm
1
2
ZADANIE 4:
Pokazany na rysunku mechanizm śrubowy składa się z dwóch płyt 1 i 2 oraz
śruby o gwintach jednozwojnych Tr32x6. Gwinty są odpowiednio prawy i lewy
jak zaznaczono na rysunku. Wymiary gwintu podane są na rysunku i w tabeli,
współczynnik tarcia na powierzchni gwintu μ=0,1.
1. Wyznaczyć moment M
s1
jakim należy obracać śrubę aby siła normalna w
śrubie wynosiła Q
1
=-20 kN?
2. Narysować wykres siły i momentu skręcającego w śrubie.
3. Wyznaczyć maksymalne naprężenia zredukowane w śrubie.
4. Jakie muszą być minimalne grubości płyt g aby naciski na powierzchnię
gwintów nie przekroczyły p
dop
=20 MPa?
5. Jak zmieni się rozwiązanie jeśli oba gwinty będą prawoskrętne?
d
P
d
2
=D
2
d
3
D
1
D
32
6
29
25
26
33
1
2
gwint
prawy
gwint lewy
M
s
g
ZADANIE 5:
Prasa tunelowa o schemacie pokazanym na rysunku składa się
z dwóch kolumn (1), dwóch trawers (2) i dwóch śrub (3). Wymiary śrub:
d=120 mm, d
3
=100 mm. Montaż odbywa się tak, że śruby podgrzane do
temp. T
1
=120° wkłada się w otwory i dokręca się nakrętki do skasowania
luzów. Studzenie śrub powoduje powstanie naciągu wstępnego w układzie.
Temperatura prasy w trakcie pracy T
2
=20°. Materiałem kolumn i trawers jest
żeliwo Żl-35 (E
z
=1·10
5
MPa, α
z
= 10·10
-6
1/°C). Śruby wykonano ze stali 45
(E
s
=2·10
5
MPa, α
s
= 120·10
-6
1/°C).
Wyznaczyć zakres zmienności sił w śrubach gdy siła Q
d
zmienia się od
0 do 1000 kN.
Uwaga: dla uproszczenia przyjąć że trawersy są idealnie sztywne na zginanie i
ściskanie.