Poszukiwana jest liniowa funkcja regresji, obrazująca zależność między zmienną zależną Y i dwiema zmiennymi niezależnymi X1 i X2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zebrane dane o ich wartościach podane są w tabeli. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla danych tych należy: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) wyznaczyć współczynniki regresji wielorakiej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) sprawdzić przy pomocy testu F istnienie liniowej zależności między zmiennymi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) sprawdzić istotność parametrów bj dla j=1,..,k na poziomie 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) oceń jakość regresji przy pomocy współczynnika determinacji wielokrotnej i skorygowanego współczynnika determinacji wielokrotnej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) współczynniki regresji wyznaczone przy pomocy macierzy pseudoinwersji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,2 |
20,0 |
75,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,6 |
17,0 |
60,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,4 |
15,0 |
65,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,8 |
11,0 |
35,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,0 |
9,0 |
37,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,4 |
6,0 |
36,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,2 |
5,0 |
34,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
4,0 |
30,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,6 |
2,0 |
8,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,8 |
1,0 |
0,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz A |
1,0 |
2,2 |
20,0 |
|
Macierz AT |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
2,6 |
17,0 |
|
|
2,2 |
2,6 |
2,4 |
2,8 |
2,0 |
1,4 |
1,2 |
1,0 |
1,6 |
1,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
2,4 |
15,0 |
|
|
20,0 |
17,0 |
15,0 |
11,0 |
9,0 |
6,0 |
5,0 |
4,0 |
2,0 |
1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
2,8 |
11,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
2,0 |
9,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,4 |
6,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,2 |
5,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,0 |
4,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,6 |
2,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,8 |
1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz AT×A |
10,0 |
19,0 |
90,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19,0 |
39,4 |
196,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90,0 |
196,4 |
1198,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz (AT×A)-1 |
1,36 |
-0,80 |
0,03 |
Macierz (AT×A)-1×AT |
|
0,18 |
-0,23 |
-0,13 |
-0,56 |
0,02 |
0,41 |
0,54 |
0,67 |
0,14 |
-0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,80 |
0,61 |
-0,04 |
|
|
-0,26 |
0,11 |
0,07 |
0,47 |
0,06 |
-0,19 |
-0,27 |
-0,35 |
0,10 |
0,26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0,03 |
-0,04 |
0,01 |
|
|
0,05 |
0,01 |
0,01 |
-0,03 |
0,00 |
0,00 |
0,01 |
0,01 |
-0,02 |
-0,04 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wektor |
27,58 |
b0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynników |
-15,32 |
b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regresji |
4,39 |
b2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) |
H0: istnieje liniowa zależność między x a y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,2 |
20,0 |
75,00 |
81,72 |
1911,23 |
1369,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,6 |
17,0 |
60,00 |
62,41 |
595,96 |
484,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,4 |
15,0 |
65,00 |
56,69 |
349,40 |
729,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,8 |
11,0 |
35,00 |
32,99 |
25,05 |
9,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,0 |
9,0 |
37,00 |
36,47 |
2,35 |
1,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,4 |
6,0 |
36,00 |
32,48 |
30,42 |
4,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,2 |
5,0 |
34,00 |
31,16 |
46,83 |
16,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
4,0 |
30,00 |
29,83 |
66,77 |
64,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,6 |
2,0 |
8,00 |
11,85 |
683,76 |
900,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,8 |
1,0 |
0,00 |
4,39 |
1129,32 |
1444,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38,00 |
|
4841,11 |
5020,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SSR |
SYY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
10 |
liczba obserwacji |
|
|
|
Falfa,k,n-k-1 |
0,951566007629483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
2 |
liczba zmiennych niezależnych |
|
|
|
Femp |
94,72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Źródło zmienności |
Suma kwadratów odchyleń |
Liczba stopni swobody |
Średnie kwadratowe odchylenia |
Iloraz F |
Istotność F (prawdopodobieństwo) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
4841,11 |
2 |
2420,56 |
94,72 |
0,000009 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd |
178,89 |
7 |
25,56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
5020,00 |
9,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo popełnienia błędu I rodzaju (im mniejsza tym lepiej) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Źródło zmienności |
Suma kwadratów odchyleń |
Liczba stopni swobody |
Średnie kwadratowe odchylenia |
Iloraz F |
Istotność F (prawdopodobieństwo) |
SSR - suma kwadratów odchyleń regresyjnych (część zmienności wyjaśniana przez model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
SSR |
k |
MSR=SSR/k |
Femp=MSR/MSE |
P(Fk,n-k-1>=Femp) |
SSE - suma kwadratów błędów (część zmienności niewyjaśniona przez model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd |
SSE |
n-k-1 |
MSE=SSE/n-k-1 |
Syy - całkowita suma kwadratów (informacja o ile poszczególne wartości różnią się od średniej) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
Syy |
n-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Między zmienną Y a przynajmniej jedną ze zmiennych X1 i/lub X2 jest związek liniowy ponieważ Femp>Falfa,k,n-k-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
2 |
4841,1128077577 |
2420,55640387885 |
94,7183228422608 |
8,54209420165679E-06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
7 |
178,887192242302 |
25,5553131774717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
9 |
5020 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) istotność współczynników regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dolne 95,0% |
Górne 95,0% |
b |
s(b) |
T |
P(Tn-k-1³ |T|) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13,6501699825289 |
41,5129809525508 |
27,58 |
5,89 |
4,68 |
0,002257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-24,6639794824253 |
-5,97955681881522 |
-15,32 |
3,95 |
-3,88 |
0,006068 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,53062777573919 |
5,25376867284717 |
4,39 |
0,36 |
12,05 |
0,000006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ta,n-(k+1) |
2,36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b0 |
Przecięcie |
27,5815754675398 |
5,89159376142655 |
4,68151345534411 |
0,002256821726604 |
13,6501699825289 |
41,5129809525508 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b1 |
Zmienna X 1 |
-15,3217681506202 |
3,95082276943342 |
-3,87812084843722 |
0,006067692030514 |
-24,6639794824253 |
-5,97955681881522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b2 |
Zmienna X 2 |
4,39219822429318 |
0,364358289993895 |
12,0546131237107 |
6,16743276323907E-06 |
3,53062777573919 |
5,25376867284717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wszystkie parametry modelu są różne od zera |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) ocena jakość regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik determinacji wielokrotnej |
0,96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Skorygowany współczynnik determinacji wielokrotnej |
0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model jest modelem bardzo dobrym i opisuje rzeczywistość bardzo dobrze |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,982020927041248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,964365101146952 |
współczynnik determinacji wielorakiej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,954183701474652 |
skorygowany wspołczynnik regresji wielorakiej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
5,05522632307118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przeprowadź analizę regresji przy wykorzystaniu narzędzia REGRESJA excela oraz programu Statgraphics (Relate|Multiple Regression) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wykorzystaj dane z arkusza RW1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
2,2 |
20,0 |
75,00 |
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
2,6 |
17,0 |
60,00 |
|
|
|
|
|
|
|
|
|
1. model opisuje model w sposób bardzo dobry. Świadczy o tym Rkwadrat (0,9643) oraz dopasowany Rkwadrat (0,9541) |
2,4 |
15,0 |
65,00 |
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
2,8 |
11,0 |
35,00 |
|
Wielokrotność R |
0,982020927041248 |
|
|
|
|
|
|
2. współczynniki wynoszą |
|
|
|
2,0 |
9,0 |
37,00 |
|
R kwadrat |
0,964365101146952 |
|
|
|
|
|
|
b0 |
27,5815754675398 |
|
|
1,4 |
6,0 |
36,00 |
|
Dopasowany R kwadrat |
0,954183701474652 |
|
|
|
|
|
|
b1 |
-15,3217681506202 |
|
|
1,2 |
5,0 |
34,00 |
|
Błąd standardowy |
5,05522632307118 |
|
|
|
|
|
|
b2 |
4,39219822429318 |
|
|
1,0 |
4,0 |
30,00 |
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
1,6 |
2,0 |
8,00 |
|
|
|
|
|
|
Falfa,k,n-k-1 |
0,99965902984296 |
|
czyli równanie regresyjne to |
|
|
y=27,58-15,32x1+4,39x2 |
1,8 |
1,0 |
0,00 |
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
3. prawdopodobieństwo popełnienia błędu 1 rodzaju jest bardzo małe ponieważ istotność F wynosi 8,54209E-06 |
|
|
|
|
Regresja |
2 |
4841,1128077577 |
2420,55640387885 |
94,7183228422608 |
8,54209420165679E-06 |
|
|
|
|
|
|
Resztkowy |
7 |
178,887192242302 |
25,5553131774717 |
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
9 |
5020 |
|
|
|
|
|
4. przynajmniej jeden x jest powiązany z y w sposób liniowy ponieważ Femp>Falfa,k,n-k-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
|
|
|
|
|
|
|
|
|
Przecięcie |
27,5815754675398 |
5,89159376142655 |
4,68151345534411 |
0,002256821726604 |
13,6501699825289 |
41,5129809525508 |
|
5. wszystkie współczynniki są różne od zera poniważ każdego pojedyńczo ITempI<=Talfa,n-k-1 |
|
|
|
|
Zmienna X 1 |
-15,3217681506202 |
3,95082276943342 |
-3,87812084843722 |
0,006067692030514 |
-24,6639794824253 |
-5,97955681881522 |
|
|
|
|
|
Zmienna X 2 |
4,39219822429318 |
0,364358289993895 |
12,0546131237107 |
6,16743276323907E-06 |
3,53062777573919 |
5,25376867284717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. w próbie było 10 obserwacji i 2 zmienne niezależne |
|
|
|
|
|
|
|
|
|
|
|
|
Ta,n-(k+1) |
2,36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Multiple Regression Analysis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dependent variable: y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Standard T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameter Estimate Error Statistic P-Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CONSTANT 27,5816 5,89159 4,68151 0,0023 |
|
|
|
|
|
|
|
|
|
|
|
x1 -15,3218 3,95082 -3,87812 0,0061 |
|
|
|
|
|
|
|
|
|
|
x2 4,3922 0,364358 12,0546 0,0000 |
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Analysis of Variance |
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
Source Sum of Squares Df Mean Square F-Ratio P-Value |
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
Model 4841,11 2 2420,56 94,72 0,0000 |
|
|
|
|
|
|
|
|
|
|
Residual 178,887 7 25,5553 |
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
Total (Corr.) 5020,0 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R-squared = 96,4365 percent |
|
|
|
|
|
|
|
|
|
|
R-squared (adjusted for d.f.) = 95,4184 percent |
|
|
|
|
|
|
|
|
|
|
Standard Error of Est. = 5,05523 |
|
|
|
|
|
|
|
|
|
|
Mean absolute error = 3,47515 |
|
|
|
|
|
|
|
|
|
|
Durbin-Watson statistic = 1,16451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The StatAdvisor |
|
|
|
|
|
|
|
|
|
|
--------------- |
|
|
|
|
|
|
|
|
|
|
The output shows the results of fitting a multiple linear |
|
|
|
|
|
|
|
|
|
|
regression model to describe the relationship between y and 2 |
|
|
|
|
|
|
|
|
|
|
independent variables. The equation of the fitted model is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = 27,5816 - 15,3218*x1 + 4,3922*x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Since the P-value in the ANOVA table is less than 0.01, there is a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
statistically significant relationship between the variables at the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99% confidence level. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The R-Squared statistic indicates that the model as fitted |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explains 96,4365% of the variability in y. The adjusted R-squared |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
statistic, which is more suitable for comparing models with different |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
numbers of independent variables, is 95,4184%. The standard error of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
the estimate shows the standard deviation of the residuals to be |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,05523. This value can be used to construct prediction limits for |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new observations by selecting the Reports option from the text menu. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The mean absolute error (MAE) of 3,47515 is the average value of the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
residuals. The Durbin-Watson (DW) statistic tests the residuals to |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
determine if there is any significant correlation based on the order |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
in which they occur in your data file. Since the DW value is less |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
than 1.4, there may be some indication of serial correlation. Plot |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
the residuals versus row order to see if there is any pattern which |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
can be seen. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In determining whether the model can be simplified, notice that the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
highest P-value on the independent variables is 0,0061, belonging to |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1. Since the P-value is less than 0.01, the highest order term is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
statistically significant at the 99% confidence level. Consequently, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
you probably don't want to remove any variables from the model. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Poszukiwana jest liniowa funkcja regresji, obrazująca zależność między zmienną zależną Y i trzema zmiennymi niezależnymi X1, X2 i X3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zebrane dane o ich wartościach podane są w tabeli. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla danych tych należy: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) wyznaczyć współczynniki regresji wielorakiej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) sprawdzić przy pomocy testu F istnienie liniowej zależności między zmiennymi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) sprawdzić istotność parametrów bj dla j=1,..,k na poziomie 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) oceń jakość regresji przy pomocy współczynnika determinacji wielokrotnej i skorygowanego współczynnika determinacji wielokrotnej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) współczynniki regresji wyznaczone przy pomocy macierzy pseudoinwersji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13,4 |
-4,3 |
0,6 |
-1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,0 |
4,7 |
-1,2 |
64,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,4 |
-3,8 |
-1,7 |
0,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,4 |
0,6 |
3,3 |
-18,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,4 |
-3,8 |
-2,8 |
-10,3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,2 |
-3,0 |
-1,0 |
-9,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18,2 |
2,8 |
-0,9 |
92,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4,4 |
-0,1 |
0,7 |
8,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9,6 |
-0,8 |
4,3 |
-7,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,6 |
0,9 |
5,5 |
-14,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,6 |
2,1 |
-1,6 |
54,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10,4 |
-1,6 |
5,4 |
-9,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,2 |
0,9 |
1,2 |
32,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,4 |
-4,8 |
3,0 |
-38,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,6 |
-4,7 |
0,0 |
-30,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz A |
1,0 |
13,4 |
-4,3 |
0,6 |
|
|
Macierz AT |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
|
1,0 |
5,0 |
4,7 |
-1,2 |
|
|
|
13,4 |
5,0 |
5,4 |
0,4 |
3,4 |
1,2 |
18,2 |
4,4 |
9,6 |
0,6 |
6,6 |
10,4 |
7,2 |
6,4 |
6,6 |
|
1,0 |
5,4 |
-3,8 |
-1,7 |
|
|
|
-4,3 |
4,7 |
-3,8 |
0,6 |
-3,8 |
-3,0 |
2,8 |
-0,1 |
-0,8 |
0,9 |
2,1 |
-1,6 |
0,9 |
-4,8 |
-4,7 |
|
1,0 |
0,4 |
0,6 |
3,3 |
|
|
|
0,6 |
-1,2 |
-1,7 |
3,3 |
-2,8 |
-1,0 |
-0,9 |
0,7 |
4,3 |
5,5 |
-1,6 |
5,4 |
1,2 |
3,0 |
0,0 |
|
1,0 |
3,4 |
-3,8 |
-2,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
1,2 |
-3,0 |
-1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
18,2 |
2,8 |
-0,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
4,4 |
-0,1 |
0,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
9,6 |
-0,8 |
4,3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
0,6 |
0,9 |
5,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
6,6 |
2,1 |
-1,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
10,4 |
-1,6 |
5,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
7,2 |
0,9 |
1,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
6,4 |
-4,8 |
3,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0 |
6,6 |
-4,7 |
0,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz AT×A |
15,0 |
98,8 |
-14,9 |
14,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98,8 |
978,1 |
-85,6 |
88,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-14,9 |
-85,6 |
141,0 |
-12,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14,8 |
88,2 |
-12,5 |
116,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Macierz (AT×A)-1 |
0,2 |
0,0 |
0,0 |
0,0 |
|
Macierz (AT×A)-1×AT |
|
-0,1 |
0,2 |
0,1 |
0,2 |
0,1 |
0,2 |
-0,1 |
0,1 |
0,0 |
0,2 |
0,1 |
-0,1 |
0,1 |
0,0 |
0,0 |
|
0,0 |
0,0 |
0,0 |
0,0 |
|
|
|
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
|
0,0 |
0,0 |
0,0 |
0,0 |
|
|
|
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
|
0,0 |
0,0 |
0,0 |
0,0 |
|
|
|
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wektor |
2,3 |
b0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynników |
3,1 |
b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regresji |
9,4 |
b2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-6,0 |
b3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13,4 |
-4,3 |
0,6 |
-1,0 |
0,26 |
54,46 |
74,59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,0 |
4,7 |
-1,2 |
64,6 |
69,10 |
3777,22 |
3239,13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,4 |
-3,8 |
-1,7 |
0,8 |
-6,23 |
192,34 |
47,43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,4 |
0,6 |
3,3 |
-18,2 |
-10,62 |
333,31 |
664,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,4 |
-3,8 |
-2,8 |
-10,3 |
-5,88 |
182,61 |
319,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,2 |
-3,0 |
-1,0 |
-9,2 |
-16,04 |
560,77 |
281,79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18,2 |
2,8 |
-0,9 |
92,6 |
90,69 |
6898,62 |
7210,27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4,4 |
-0,1 |
0,7 |
8,6 |
10,90 |
10,62 |
0,83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9,6 |
-0,8 |
4,3 |
-7,7 |
-1,02 |
74,90 |
233,68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,6 |
0,9 |
5,5 |
-14,6 |
-20,38 |
784,85 |
494,47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,6 |
2,1 |
-1,6 |
54,7 |
52,15 |
1981,08 |
2214,96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10,4 |
-1,6 |
5,4 |
-9,7 |
-12,61 |
409,78 |
300,56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,2 |
0,9 |
1,2 |
32,0 |
26,00 |
337,06 |
591,14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,4 |
-4,8 |
3,0 |
-38,0 |
-40,65 |
2331,97 |
2082,71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,6 |
-4,7 |
0,0 |
-30,0 |
-21,11 |
826,15 |
1416,52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,64 |
|
18755,73 |
19172,96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SSR |
SYY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
15,00 |
liczba obserwacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
3,00 |
liczba zmiennych zależnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Źródło zmienności |
Suma kwadratów odchyleń |
Liczba stopni swobody |
Średnie kwadratowe odchylenia |
Iloraz F |
Istotność F (prawdopodobieństwo) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
18755,73 |
3,00 |
6251,91 |
164,83 |
0,00 |
|
Falfa,1,n-2 |
4,66719273182685 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd |
417,23 |
11,00 |
37,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
19172,96 |
14,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Między zmienną Y a przynajmniej jedną ze zmiennych X1 i/lub X2 jest związek liniowy. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) istotność współczynników regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
s(b) |
temp |
P(Tn-k-1³ |T|) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,30 |
2,93 |
0,79 |
0,45 |
b0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,12 |
0,34 |
9,14 |
0,00 |
b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9,36 |
0,55 |
17,04 |
0,00 |
b2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-6,00 |
0,61 |
-9,82 |
0,00 |
b3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ta,n-(k+1) |
2,20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik b0 jest nieistotny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) ocena jakość regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik determinacji wielokrotnej |
0,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Skorygowany współczynnik determinacji wielokrotnej |
0,97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model opisuje rzeczywistość w sposób bardzo dobry |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,989059448018609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,978238591714875 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,972303662182568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
6,15873851731308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
3 |
18755,7316719623 |
6251,91055732078 |
164,827330533551 |
2,01284535941907E-09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
11 |
417,230661370993 |
37,9300601246357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
14 |
19172,9623333333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
2,300995131552 |
2,92582840410249 |
0,786442269931355 |
0,448219708429316 |
-4,1387097628444 |
8,7407000259484 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna X 1 |
3,12004914955948 |
0,341531282670947 |
9,13547106185739 |
1,8107E-06 |
2,36834386516149 |
3,87175443395747 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna X 2 |
9,36159818115234 |
0,54935127575294 |
17,0411876596106 |
2,95500216957241E-09 |
8,15248417629521 |
10,5707121860095 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna X 3 |
-5,9958087872018 |
0,610697207294027 |
-9,81797315525474 |
8,87991580203521E-07 |
-7,33994427692883 |
-4,65167329747477 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przeprowadź analizę regresji przy wykorzystaniu narzędzia REGRESJA excela oraz programu Statgraphics (Relate|Multiple Regression) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wykorzystaj dane z arkusza RW2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
13,4 |
-4,3 |
0,6 |
-1,0 |
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
5,0 |
4,7 |
-1,2 |
64,6 |
|
|
|
|
|
|
|
|
1. model opisuje model w sposób bardzo dobry. Świadczy o tym Rkwadrat (0,9782) oraz dopasowany Rkwadrat (0,9723) |
5,4 |
-3,8 |
-1,7 |
0,8 |
|
Statystyki regresji |
|
|
|
|
|
0,4 |
0,6 |
3,3 |
-18,2 |
|
Wielokrotność R |
0,989059448018609 |
|
|
|
|
|
|
|
|
|
3,4 |
-3,8 |
-2,8 |
-10,3 |
|
R kwadrat |
0,978238591714875 |
|
|
|
|
|
|
|
|
|
1,2 |
-3,0 |
-1,0 |
-9,2 |
|
Dopasowany R kwadrat |
0,972303662182568 |
|
|
|
|
|
2. współczynniki wynoszą |
|
|
|
18,2 |
2,8 |
-0,9 |
92,6 |
|
Błąd standardowy |
6,15873851731308 |
|
|
|
|
|
b0 |
2,300995131552 |
|
|
4,4 |
-0,1 |
0,7 |
8,6 |
|
Obserwacje |
15 |
|
|
|
|
|
b1 |
3,12004914955948 |
|
|
9,6 |
-0,8 |
4,3 |
-7,7 |
|
|
|
|
|
Falfa,1,n-2 |
4,66719273182685 |
|
b2 |
9,36159818115234 |
|
|
0,6 |
0,9 |
5,5 |
-14,6 |
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
b3 |
-5,9958087872018 |
|
|
6,6 |
2,1 |
-1,6 |
54,7 |
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
10,4 |
-1,6 |
5,4 |
-9,7 |
|
Regresja |
3 |
18755,7316719623 |
6251,91055732078 |
164,827330533551 |
2,01284535941907E-09 |
|
czyli równanie regresyjne to |
|
|
y=2,3+3,12x1+9,36x2-5,99x3 |
7,2 |
0,9 |
1,2 |
32,0 |
|
Resztkowy |
11 |
417,230661370993 |
37,9300601246357 |
|
|
|
|
|
|
|
6,4 |
-4,8 |
3,0 |
-38,0 |
|
Razem |
14 |
19172,9623333333 |
|
|
|
|
3. prawdopodobieństwo popełnienia błędu 1 rodzaju jest bardzo małe ponieważ istotność F wynosi 2,01285E-09 |
6,6 |
-4,7 |
0,0 |
-30,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
2,300995131552 |
2,92582840410249 |
0,786442269931355 |
0,448219708429316 |
|
|
4. przynajmniej jeden x jest powiązany z y w sposób liniowy ponieważ Femp>Falfa,k,n-k-1 |
|
|
|
|
|
Zmienna X 1 |
3,12004914955948 |
0,341531282670947 |
9,13547106185739 |
1,81065626512806E-06 |
|
|
|
|
|
|
|
Zmienna X 2 |
9,36159818115234 |
0,54935127575294 |
17,0411876596106 |
2,95500216957241E-09 |
|
|
|
|
|
|
|
|
|
|
|
Zmienna X 3 |
-5,9958087872018 |
0,610697207294027 |
-9,81797315525474 |
8,87991580203521E-07 |
|
|
5.współczynniki b1, b2, b3 są różne od zera poniważ ich ITempI<=Talfa,n-k-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ta,n-(k+1) |
2,20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. w próbie było 15 obserwacji i 3 zmienne niezależne |
|
|
|
|
Multiple Regression Analysis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dependent variable: y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Standard T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameter Estimate Error Statistic P-Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CONSTANT 2,29479 2,93273 0,782476 0,4505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1 3,12268 0,342337 9,12167 0,0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x2 9,36634 0,550647 17,0097 0,0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x3 -5,99895 0,612137 -9,8 0,0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Analysis of Variance |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Source Sum of Squares Df Mean Square F-Ratio P-Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 18777,4 3 6259,13 164,24 0,0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Residual 419,201 11 38,1091 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
Total (Corr.) 19196,6 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R-squared = 97,8163 percent |
|
|
|
|
|
|
|
|
|
|
R-squared (adjusted for d.f.) = 97,2207 percent |
|
|
|
|
|
|
|
|
|
|
Standard Error of Est. = 6,17326 |
|
|
|
|
|
|
|
|
|
|
Mean absolute error = 4,7523 |
|
|
|
|
|
|
|
|
|
|
Durbin-Watson statistic = 2,09187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The StatAdvisor |
|
|
|
|
|
|
|
|
|
|
--------------- |
|
|
|
|
|
|
|
|
|
|
The output shows the results of fitting a multiple linear |
|
|
|
|
|
|
|
|
|
|
regression model to describe the relationship between y and 3 |
|
|
|
|
|
|
|
|
|
|
independent variables. The equation of the fitted model is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = 2,29479 + 3,12268*x1 + 9,36634*x2 - 5,99895*x3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Since the P-value in the ANOVA table is less than 0.01, there is a |
|
|
|
|
|
|
|
|
|
|
statistically significant relationship between the variables at the |
|
|
|
|
|
|
|
|
|
|
99% confidence level. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The R-Squared statistic indicates that the model as fitted |
|
|
|
|
|
|
|
|
|
|
explains 97,8163% of the variability in y. The adjusted R-squared |
|
|
|
|
|
|
|
|
|
|
statistic, which is more suitable for comparing models with different |
|
|
|
|
|
|
|
|
|
|
numbers of independent variables, is 97,2207%. The standard error of |
|
|
|
|
|
|
|
|
|
|
the estimate shows the standard deviation of the residuals to be |
|
|
|
|
|
|
|
|
|
|
6,17326. This value can be used to construct prediction limits for |
|
|
|
|
|
|
|
|
|
|
new observations by selecting the Reports option from the text menu. |
|
|
|
|
|
|
|
|
|
|
The mean absolute error (MAE) of 4,7523 is the average value of the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
residuals. The Durbin-Watson (DW) statistic tests the residuals to |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
determine if there is any significant correlation based on the order |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
in which they occur in your data file. Since the DW value is greater |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
than 1.4, there is probably not any serious autocorrelation in the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
residuals. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In determining whether the model can be simplified, notice that the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
highest P-value on the independent variables is 0,0000, belonging to |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1. Since the P-value is less than 0.01, the highest order term is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
statistically significant at the 99% confidence level. Consequently, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
you probably don't want to remove any variables from the model. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przeprowadź analizę regresji. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) współczynniki regresji wyznaczone przy pomocy macierzy pseudoinwersji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
X4 |
X5 |
X6 |
X7 |
X8 |
Y |
|
|
|
|
|
A |
|
|
|
|
|
|
At |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2841 |
16,4 |
79,7869939420229 |
31,8 |
87,2680773122767 |
4620 |
135,3 |
114 |
39131562 |
|
|
1 |
2841 |
16,4 |
79,7869939420229 |
31,8 |
87,2680773122767 |
4620 |
135,3 |
114 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
2180 |
23,8 |
207,10964641474 |
125 |
264,091587130816 |
4280,9 |
350 |
86,9 |
37004970 |
|
|
1 |
2180 |
23,8 |
207,10964641474 |
125 |
264,091587130816 |
4280,9 |
350 |
86,9 |
|
2841 |
2180 |
2747 |
2478 |
5636 |
4237 |
5353 |
4913 |
4919 |
5092 |
4559 |
3944 |
5052 |
2947 |
5564 |
4907 |
4601 |
5460 |
4056 |
6001 |
7118 |
6880 |
3860 |
8180 |
2627 |
4648 |
5160 |
2525 |
1797 |
8450 |
4343 |
3425 |
4089 |
2694 |
1479 |
3700 |
6761 |
5176 |
4043 |
2528 |
6413 |
2459 |
2025 |
5848 |
4315 |
4486 |
4884 |
|
|
2747 |
23,7 |
53,5103498873864 |
106,7 |
75,5068032600636 |
2734,4 |
0 |
92,1 |
22591462 |
|
|
1 |
2747 |
23,7 |
53,5103498873864 |
106,7 |
75,5068032600636 |
2734,4 |
0 |
92,1 |
|
16,4 |
23,8 |
23,7 |
17 |
26,1 |
34,1 |
29,1 |
31,8 |
23,9 |
26,2 |
34,2 |
20,2 |
10,6 |
22,4 |
18,4 |
28,2 |
29,5 |
22,7 |
17,1 |
24 |
46,7 |
22,1 |
43,2 |
24,7 |
12,3 |
36,9 |
18,4 |
30,9 |
37,5 |
28,9 |
22,2 |
35,2 |
29,4 |
39,2 |
33,3 |
45,2 |
40,3 |
18,7 |
27,2 |
28,3 |
33 |
31,4 |
18,5 |
47,4 |
33,1 |
20,4 |
36,4 |
|
|
2478 |
17 |
20,1904335052338 |
108,3 |
30,0335531559076 |
4042 |
57,8 |
55 |
13759752 |
|
|
1 |
2478 |
17 |
20,1904335052338 |
108,3 |
30,0335531559076 |
4042 |
57,8 |
55 |
|
79,7869939420229 |
207,10964641474 |
53,5103498873864 |
20,1904335052338 |
19,8563933998921 |
20,5830655051373 |
11,4812519776432 |
24,2594891497557 |
91,6091370640629 |
14,7573654098553 |
57,973806990563 |
40,2100589062459 |
42,2439443832825 |
44,9185523022565 |
23,9927768384777 |
97,9864538934904 |
36,5743773884186 |
80,8584617934246 |
18,9504884607493 |
1,02936446214802 |
73,4387019607236 |
33,0758328944064 |
62,6307190762425 |
11,102107438614 |
61,0927927644369 |
28,6657425043111 |
65,7493129514275 |
44,4839873501485 |
88,6953783215912 |
112,51115295284 |
367,592145906398 |
127,865505266513 |
208,180566727682 |
59,6147647569145 |
68,2602990556162 |
118,253343105095 |
61,4527146076234 |
19,9538506651253 |
30,5494250424987 |
15,9344286274649 |
24,814458839007 |
49,3355855155593 |
29,0946885704724 |
48,702930646456 |
6,33116700239002 |
37,7865246139613 |
32,4626192266842 |
|
|
5636 |
26,1 |
19,8563933998921 |
166,7 |
66,8666886887359 |
3220,2 |
185,5 |
165,2 |
44392145 |
|
|
1 |
5636 |
26,1 |
19,8563933998921 |
166,7 |
66,8666886887359 |
3220,2 |
185,5 |
165,2 |
|
31,8 |
125 |
106,7 |
108,3 |
166,7 |
133,3 |
187,5 |
230,8 |
185,7 |
213,3 |
213,3 |
210 |
220,8 |
217,5 |
360 |
198,7 |
128,2 |
156,5 |
107,1 |
148,6 |
208,3 |
47,5 |
225 |
196,1 |
190 |
165,3 |
69,2 |
240 |
240 |
300 |
340 |
200 |
176 |
311,1 |
200 |
180 |
200 |
152,5 |
160,9 |
131,4 |
65 |
92,1 |
73,3 |
157,3 |
90,9 |
110,3 |
128,6 |
|
|
4237 |
34,1 |
20,5830655051373 |
133,3 |
38,1520431394949 |
4217,1 |
167,5 |
109,6 |
25219360 |
|
|
1 |
4237 |
34,1 |
20,5830655051373 |
133,3 |
38,1520431394949 |
4217,1 |
167,5 |
109,6 |
|
87,2680773122767 |
264,091587130816 |
75,5068032600636 |
30,0335531559076 |
66,8666886887359 |
38,1520431394949 |
66,8941156680454 |
34,9543050232145 |
131,354019682081 |
85,8810741802957 |
73,0586484532835 |
67,5306461019375 |
52,345290299851 |
32,5464348142376 |
75,0948740984759 |
145,247968987201 |
96,192518050565 |
118,09062336688 |
46,6442494104057 |
88,2289148365339 |
114,855984018892 |
81,2697545172201 |
48,5941483062339 |
57,7003740079656 |
47,5991621155199 |
104,117013916873 |
55,5184482120257 |
83,9202977524191 |
103,175624076385 |
254,125288880438 |
449,819257138886 |
161,333246676536 |
255,812988206292 |
65,9440794433083 |
75,7957543243967 |
187,459649020875 |
128,351062208268 |
100,104544370153 |
55,5436497715258 |
38,7974076062792 |
31,66592853408 |
119,721937610141 |
68,712695692187 |
108,421145301288 |
80,4384280112396 |
159,553367007669 |
69,2271554042684 |
|
|
5353 |
29,1 |
11,4812519776432 |
187,5 |
66,8941156680454 |
3054,6 |
335,1 |
134,1 |
26188480 |
|
|
1 |
5353 |
29,1 |
11,4812519776432 |
187,5 |
66,8941156680454 |
3054,6 |
335,1 |
134,1 |
|
4620 |
4280,9 |
2734,4 |
4042 |
3220,2 |
4217,1 |
3054,6 |
3015,3 |
4007 |
4524 |
3597,7 |
3870 |
3146 |
4867 |
3328,9 |
3506,9 |
3520 |
4173,3 |
5155,6 |
2760,1 |
3616,5 |
3585 |
3035 |
3324,3 |
3873,4 |
4606,7 |
3382,2 |
3180 |
4748 |
4215,5 |
4613,2 |
4099,2 |
4472 |
3304,8 |
4168 |
3498,3 |
3250,4 |
3083,3 |
3288,4 |
3004,5 |
2544,5 |
2739,2 |
2272,6 |
2382,5 |
2438 |
0 |
2361,6 |
|
|
4913 |
31,8 |
24,2594891497557 |
230,8 |
34,9543050232145 |
3015,3 |
120 |
130,2 |
21057900 |
|
|
1 |
4913 |
31,8 |
24,2594891497557 |
230,8 |
34,9543050232145 |
3015,3 |
120 |
130,2 |
|
135,3 |
350 |
0 |
57,8 |
185,5 |
167,5 |
335,1 |
120 |
102,4 |
180,8 |
180,1 |
110,6 |
94,4 |
187,8 |
100,5 |
136,8 |
202,4 |
194,5 |
287,4 |
89,8 |
127,4 |
125,5 |
100,8 |
135,3 |
253,3 |
101,2 |
103,3 |
198,3 |
162 |
247,6 |
176,6 |
161 |
0 |
194,1 |
202 |
53,2 |
118,7 |
128,3 |
103,6 |
196,6 |
73,9 |
82,2 |
175,8 |
218,6 |
154,1 |
129,9 |
206,3 |
|
|
4919 |
23,9 |
91,6091370640629 |
185,7 |
131,354019682081 |
4007 |
102,4 |
179,6 |
49066396 |
|
|
1 |
4919 |
23,9 |
91,6091370640629 |
185,7 |
131,354019682081 |
4007 |
102,4 |
179,6 |
|
114 |
86,9 |
92,1 |
55 |
165,2 |
109,6 |
134,1 |
130,2 |
179,6 |
156 |
128,1 |
81,1 |
101,9 |
50,2 |
107,8 |
204,3 |
97,8 |
134,6 |
100,3 |
188,9 |
147 |
235,1 |
71,3 |
186,7 |
43,8 |
181,2 |
66,1 |
66 |
36,4 |
302,1 |
336,9 |
82,3 |
116,3 |
61,2 |
26,6 |
123,5 |
138 |
200,5 |
116,2 |
79,4 |
125 |
217,1 |
56 |
142,6 |
230,1 |
318,5 |
148,9 |
|
|
5092 |
26,2 |
14,7573654098553 |
213,3 |
85,8810741802957 |
4524 |
180,8 |
156 |
36933810 |
|
|
1 |
5092 |
26,2 |
14,7573654098553 |
213,3 |
85,8810741802957 |
4524 |
180,8 |
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4559 |
34,2 |
57,973806990563 |
213,3 |
73,0586484532835 |
3597,7 |
180,1 |
128,1 |
34536300 |
|
|
1 |
4559 |
34,2 |
57,973806990563 |
213,3 |
73,0586484532835 |
3597,7 |
180,1 |
128,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3944 |
20,2 |
40,2100589062459 |
210 |
67,5306461019375 |
3870 |
110,6 |
81,1 |
17825210 |
|
|
1 |
3944 |
20,2 |
40,2100589062459 |
210 |
67,5306461019375 |
3870 |
110,6 |
81,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5052 |
10,6 |
42,2439443832825 |
220,8 |
52,345290299851 |
3146 |
94,4 |
101,9 |
18436494 |
|
|
1 |
5052 |
10,6 |
42,2439443832825 |
220,8 |
52,345290299851 |
3146 |
94,4 |
101,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2947 |
22,4 |
44,9185523022565 |
217,5 |
32,5464348142376 |
4867 |
187,8 |
50,2 |
7794143 |
|
|
1 |
2947 |
22,4 |
44,9185523022565 |
217,5 |
32,5464348142376 |
4867 |
187,8 |
50,2 |
|
AtA |
47 |
207400 |
1320,2 |
2875,51315806499 |
8100,6 |
4783,56082779167 |
164728,1 |
7148,3 |
6272,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5564 |
18,4 |
23,9927768384777 |
360 |
75,0948740984759 |
3328,9 |
100,5 |
107,8 |
26745880 |
|
|
1 |
5564 |
18,4 |
23,9927768384777 |
360 |
75,0948740984759 |
3328,9 |
100,5 |
107,8 |
|
|
207400 |
1037878004 |
5896541,4 |
12041685,4445774 |
36382555,9 |
21545643,1599013 |
717379882,6 |
31173389,7 |
30731758,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4907 |
28,2 |
97,9864538934904 |
198,7 |
145,247968987201 |
3506,9 |
136,8 |
204,3 |
43659878 |
|
|
1 |
4907 |
28,2 |
97,9864538934904 |
198,7 |
145,247968987201 |
3506,9 |
136,8 |
204,3 |
|
|
1320,2 |
5896541,4 |
40718,74 |
81824,6945733934 |
232980,34 |
136581,07765664 |
4593526,5 |
199914,31 |
175665,12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4601 |
29,5 |
36,5743773884186 |
128,2 |
96,192518050565 |
3520 |
202,4 |
97,8 |
40158980 |
|
|
1 |
4601 |
29,5 |
36,5743773884186 |
128,2 |
96,192518050565 |
3520 |
202,4 |
97,8 |
|
|
2875,51315806499 |
12041685,4445774 |
81824,6945733934 |
362948,95721437 |
565466,376409335 |
495325,617998371 |
11049251,6778643 |
447260,540617376 |
432663,449670669 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5460 |
22,7 |
80,8584617934246 |
156,5 |
118,09062336688 |
4173,3 |
194,5 |
134,6 |
35824870 |
|
|
1 |
5460 |
22,7 |
80,8584617934246 |
156,5 |
118,09062336688 |
4173,3 |
194,5 |
134,6 |
|
|
8100,6 |
36382555,9 |
232980,34 |
565466,376409335 |
1633030,16 |
904741,097623005 |
29136006,43 |
1260267,05 |
1091548,09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4056 |
17,1 |
18,9504884607493 |
107,1 |
46,6442494104057 |
5155,6 |
287,4 |
100,3 |
23399975 |
|
|
1 |
4056 |
17,1 |
18,9504884607493 |
107,1 |
46,6442494104057 |
5155,6 |
287,4 |
100,3 |
|
|
4783,56082779167 |
21545643,1599013 |
136581,07765664 |
495325,617998371 |
904741,097623005 |
756409,998658855 |
17387982,4243114 |
745686,676764365 |
774363,75412092 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6001 |
24 |
1,02936446214802 |
148,6 |
88,2289148365339 |
2760,1 |
89,8 |
188,9 |
49179649 |
|
|
1 |
6001 |
24 |
1,02936446214802 |
148,6 |
88,2289148365339 |
2760,1 |
89,8 |
188,9 |
|
|
164728,1 |
717379882,6 |
4593526,5 |
11049251,6778643 |
29136006,43 |
17387982,4243114 |
614626583,65 |
25589410,15 |
21186310,86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7118 |
46,7 |
73,4387019607236 |
208,3 |
114,855984018892 |
3616,5 |
127,4 |
147 |
37397680 |
|
|
1 |
7118 |
46,7 |
73,4387019607236 |
208,3 |
114,855984018892 |
3616,5 |
127,4 |
147 |
|
|
7148,3 |
31173389,7 |
199914,31 |
447260,540617376 |
1260267,05 |
745686,676764365 |
25589410,15 |
1328438,19 |
939508,19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6880 |
22,1 |
33,0758328944064 |
47,5 |
81,2697545172201 |
3585 |
125,5 |
235,1 |
22132330 |
|
|
1 |
6880 |
22,1 |
33,0758328944064 |
47,5 |
81,2697545172201 |
3585 |
125,5 |
235,1 |
|
|
6272,5 |
30731758,4 |
175665,12 |
432663,449670669 |
1091548,09 |
774363,75412092 |
21186310,86 |
939508,19 |
1073792,91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3860 |
43,2 |
62,6307190762425 |
225 |
48,5941483062339 |
3035 |
100,8 |
71,3 |
-934540 |
|
|
1 |
3860 |
43,2 |
62,6307190762425 |
225 |
48,5941483062339 |
3035 |
100,8 |
71,3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8180 |
24,7 |
11,102107438614 |
196,1 |
57,7003740079656 |
3324,3 |
135,3 |
186,7 |
38524090 |
|
|
1 |
8180 |
24,7 |
11,102107438614 |
196,1 |
57,7003740079656 |
3324,3 |
135,3 |
186,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2627 |
12,3 |
61,0927927644369 |
190 |
47,5991621155199 |
3873,4 |
253,3 |
43,8 |
12701906 |
|
|
1 |
2627 |
12,3 |
61,0927927644369 |
190 |
47,5991621155199 |
3873,4 |
253,3 |
43,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4648 |
36,9 |
28,6657425043111 |
165,3 |
104,117013916873 |
4606,7 |
101,2 |
181,2 |
64121521 |
|
|
1 |
4648 |
36,9 |
28,6657425043111 |
165,3 |
104,117013916873 |
4606,7 |
101,2 |
181,2 |
|
(AtA)-1 |
1,03267158266884 |
-8,7893493407138E-06 |
-0,009473666734006 |
-0,000417136090768 |
-0,00022337978421 |
0,001242857867838 |
-0,000136596763819 |
-0,000520251170938 |
-0,001581758040344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5160 |
18,4 |
65,7493129514275 |
69,2 |
55,5184482120257 |
3382,2 |
103,3 |
66,1 |
7285930 |
|
|
1 |
5160 |
18,4 |
65,7493129514275 |
69,2 |
55,5184482120257 |
3382,2 |
103,3 |
66,1 |
|
|
-8,78934934071357E-06 |
1,54019542361587E-08 |
-3,64819535762457E-07 |
9,53114236496464E-08 |
-5,98570017184386E-08 |
7,31615629457104E-08 |
-4,98323009943015E-09 |
1,44891490745724E-08 |
-2,74450427731399E-07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2525 |
30,9 |
44,4839873501485 |
240 |
83,9202977524191 |
3180 |
198,3 |
66 |
24112972 |
|
|
1 |
2525 |
30,9 |
44,4839873501485 |
240 |
83,9202977524191 |
3180 |
198,3 |
66 |
|
9x9 |
-0,009473666734006 |
-3,64819535762452E-07 |
0,000308611342782 |
1,40096537168674E-05 |
-6,1421600961463E-06 |
-2,07352884796461E-05 |
6,23048821922023E-07 |
1,89531872570422E-06 |
1,68950195586083E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1797 |
37,5 |
88,6953783215912 |
240 |
103,175624076385 |
4748 |
162 |
36,4 |
13316749 |
|
|
1 |
1797 |
37,5 |
88,6953783215912 |
240 |
103,175624076385 |
4748 |
162 |
36,4 |
|
|
-0,000417136090768 |
9,53114236496506E-08 |
1,4009653716867E-05 |
6,31638145743794E-05 |
-4,37153695056134E-07 |
-5,53449757654022E-05 |
-3,74244255558298E-07 |
3,63781659400132E-06 |
1,65237924823803E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8450 |
28,9 |
112,51115295284 |
300 |
254,125288880438 |
4215,5 |
247,6 |
302,1 |
143678152 |
|
|
1 |
8450 |
28,9 |
112,51115295284 |
300 |
254,125288880438 |
4215,5 |
247,6 |
302,1 |
|
|
-0,00022337978421 |
-5,98570017184387E-08 |
-6,14216009614633E-06 |
-4,37153695056161E-07 |
5,37204690919057E-06 |
-1,65399844581651E-06 |
-5,44378465866625E-08 |
-3,98415600046466E-07 |
1,3534873220607E-06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4343 |
22,2 |
367,592145906398 |
340 |
449,819257138886 |
4613,2 |
176,6 |
336,9 |
104513701 |
|
|
1 |
4343 |
22,2 |
367,592145906398 |
340 |
449,819257138886 |
4613,2 |
176,6 |
336,9 |
|
|
0,001242857867838 |
7,31615629457066E-08 |
-2,07352884796459E-05 |
-5,53449757654022E-05 |
-1,65399844581653E-06 |
5,70166989910595E-05 |
9,74283282867361E-08 |
-3,32684101471912E-06 |
-2,21092846295828E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3425 |
35,2 |
127,865505266513 |
200 |
161,333246676536 |
4099,2 |
161 |
82,3 |
37709407 |
|
|
1 |
3425 |
35,2 |
127,865505266513 |
200 |
161,333246676536 |
4099,2 |
161 |
82,3 |
|
|
-0,000136596763819 |
-4,98323009943015E-09 |
6,23048821922037E-07 |
-3,74244255558295E-07 |
-5,44378465866633E-08 |
9,74283282867331E-08 |
4,10990880938158E-08 |
-6,87782263436805E-08 |
2,2376446965429E-07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4089 |
29,4 |
208,180566727682 |
176 |
255,812988206292 |
4472 |
0 |
116,3 |
49860570 |
|
|
1 |
4089 |
29,4 |
208,180566727682 |
176 |
255,812988206292 |
4472 |
0 |
116,3 |
|
|
-0,000520251170938 |
1,44891490745728E-08 |
1,89531872570416E-06 |
3,63781659400128E-06 |
-3,98415600046466E-07 |
-3,32684101471908E-06 |
-6,87782263436811E-08 |
4,53683321561437E-06 |
1,0401880735709E-06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2694 |
39,2 |
59,6147647569145 |
311,1 |
65,9440794433083 |
3304,8 |
194,1 |
61,2 |
14778679 |
|
|
1 |
2694 |
39,2 |
59,6147647569145 |
311,1 |
65,9440794433083 |
3304,8 |
194,1 |
61,2 |
|
|
-0,001581758040344 |
-2,74450427731397E-07 |
1,68950195586084E-05 |
1,65237924823804E-05 |
1,35348732206069E-06 |
-2,21092846295828E-05 |
2,23764469654289E-07 |
1,04018807357093E-06 |
1,78470522480164E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1479 |
33,3 |
68,2602990556162 |
200 |
75,7957543243967 |
4168 |
202 |
26,6 |
8713990 |
|
|
1 |
1479 |
33,3 |
68,2602990556162 |
200 |
75,7957543243967 |
4168 |
202 |
26,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3700 |
45,2 |
118,253343105095 |
180 |
187,459649020875 |
3498,3 |
53,2 |
123,5 |
40385260 |
|
|
1 |
3700 |
45,2 |
118,253343105095 |
180 |
187,459649020875 |
3498,3 |
53,2 |
123,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6761 |
40,3 |
61,4527146076234 |
200 |
128,351062208268 |
3250,4 |
118,7 |
138 |
47598635 |
|
|
1 |
6761 |
40,3 |
61,4527146076234 |
200 |
128,351062208268 |
3250,4 |
118,7 |
138 |
|
(AtA)-1At |
0,038621762496031 |
0,097650688672223 |
0,312499735295202 |
0,185361159973823 |
-0,024224249511698 |
-0,155110788899111 |
-0,05729297780144 |
-0,010260681743601 |
-0,03812528466162 |
-0,166138047068079 |
-0,100181440468034 |
0,112436661646334 |
0,245934674317436 |
-0,074236297512493 |
0,134843728180141 |
-0,055706543713872 |
0,047603082456479 |
-0,036441317535285 |
-0,15124324812329 |
0,106057698844544 |
-0,199526148568455 |
-0,087430320709655 |
-0,006299918405188 |
-0,069740196359272 |
0,15413415776959 |
-0,245763447021544 |
0,21882659287901 |
0,107936604235455 |
-0,091180053035963 |
-0,295979122736949 |
-0,140958468975091 |
-0,002280566226347 |
0,115171658630955 |
-0,02398579266297 |
0,008751779216543 |
0,014509915852765 |
-0,043360496749554 |
0,086987660573865 |
0,0729171914893 |
0,116290127842382 |
0,094423257104084 |
0,060899685636996 |
0,406031835735539 |
-0,053209044464198 |
-0,01896161685559 |
0,38651044136422 |
0,023235969596377 |
|
5176 |
18,7 |
19,9538506651253 |
152,5 |
100,104544370153 |
3083,3 |
128,3 |
200,5 |
38045760 |
|
|
1 |
5176 |
18,7 |
19,9538506651253 |
152,5 |
100,104544370153 |
3083,3 |
128,3 |
200,5 |
|
|
-1,12790994351213E-05 |
7,57209952841977E-06 |
-9,79183154555894E-06 |
-1,35855882570077E-05 |
6,60225416729734E-06 |
-7,86510342032805E-06 |
1,06359847323532E-05 |
-2,68696889776309E-06 |
-2,29571688859138E-06 |
-7,73739109593217E-06 |
-3,42128655426289E-06 |
8,49228472200938E-07 |
1,75178393267808E-05 |
-1,3237976643902E-05 |
1,17084967232023E-05 |
-6,99145663689011E-06 |
1,27131311073771E-05 |
1,90833239887816E-05 |
-2,80409523914102E-06 |
8,24366060660038E-06 |
3,02189187345505E-05 |
1,47989162070896E-05 |
-2,27310110357279E-06 |
3,58839781440082E-05 |
-2,53612677149614E-06 |
-2,14280948269095E-05 |
3,66597025898842E-05 |
-1,62456483364787E-05 |
-2,44594078189881E-05 |
2,18418129477426E-05 |
-1,52960281979754E-05 |
2,45795771532558E-06 |
1,72827893572551E-05 |
-2,01649848207717E-05 |
-2,32221040962655E-05 |
-4,63712554930731E-06 |
3,15653575013584E-05 |
-4,32666375635272E-06 |
-5,87487960891591E-06 |
-1,76005119508903E-05 |
3,28200792688202E-05 |
-4,6465061883601E-05 |
-5,08380752032451E-06 |
1,93056840506331E-05 |
-2,64253917780865E-05 |
-2,39963880648066E-05 |
3,97062552955904E-06 |
|
4043 |
27,2 |
30,5494250424987 |
160,9 |
55,5436497715258 |
3288,4 |
103,6 |
116,2 |
13251010 |
|
|
1 |
4043 |
27,2 |
30,5494250424987 |
160,9 |
55,5436497715258 |
3288,4 |
103,6 |
116,2 |
|
9x47 |
-0,001274999895886 |
-0,001467525736879 |
-0,00137340353264 |
-0,002579247225419 |
-0,000458269891966 |
0,0029793769577 |
-1,99227143005587E-05 |
0,001051133387503 |
-0,000748270491605 |
-0,000332887099506 |
0,002151948640652 |
-0,002814350627871 |
-0,006034583232395 |
-0,000780932545307 |
-0,005171405077325 |
0,000475456220415 |
-8,86997034642231E-05 |
-0,001494317292347 |
-0,001584162772326 |
-0,001902686623776 |
0,004687851937224 |
-0,000233326283577 |
0,00422459104386 |
-0,001598627210481 |
-0,00430082864641 |
0,003569195162361 |
-0,002912967300357 |
2,24379304988747E-05 |
0,002953030850745 |
-0,000973562282443 |
-0,001571639786491 |
0,001607181797962 |
-0,000609913865428 |
0,002658969076005 |
0,001848876581567 |
0,004156780912565 |
0,002049573352253 |
-0,002772102776611 |
-5,80138493197703E-05 |
0,000535485431845 |
0,00150000852712 |
0,002493010079795 |
-0,003275248963062 |
0,004797012234565 |
0,002728239154103 |
-0,002643799373199 |
0,002585535521649 |
|
2528 |
28,3 |
15,9344286274649 |
131,4 |
38,7974076062792 |
3004,5 |
196,6 |
79,4 |
14317200 |
|
|
1 |
2528 |
28,3 |
15,9344286274649 |
131,4 |
38,7974076062792 |
3004,5 |
196,6 |
79,4 |
|
|
0,000926202231614 |
-0,000357827686529 |
-0,000170427699401 |
-0,000770656383717 |
0,000165691964329 |
0,000436852530861 |
-0,000266566564624 |
0,001452994627619 |
0,000662538412705 |
-0,001936608898878 |
0,001447141657785 |
-0,000753599557323 |
0,00073740777432 |
0,000809656999002 |
-0,001526026016178 |
0,001070246676039 |
-0,001599980734564 |
0,000294299311524 |
-0,000448955561471 |
-0,00197684139445 |
0,00064545021662 |
0,001118402171167 |
0,002133183630793 |
0,00046373807928 |
0,001342589272592 |
-0,001842922620062 |
0,001584747904882 |
-0,001061429248082 |
-0,000519449709883 |
-0,001981011590533 |
0,002965310234277 |
-0,00012600241475 |
-0,000452851073651 |
0,0008491891491 |
-0,000165891304441 |
-0,001490551100578 |
-0,001021927142497 |
-0,0013825668861 |
0,000200766490436 |
-7,51528960245425E-05 |
0,001824869679464 |
-0,00043169398169 |
-0,001247813152802 |
7,11182226749954E-05 |
-0,000183542528603 |
-0,000460346076019 |
0,001048244985765 |
|
6413 |
33 |
24,814458839007 |
65 |
31,66592853408 |
2544,5 |
73,9 |
125 |
17212920 |
|
|
1 |
6413 |
33 |
24,814458839007 |
65 |
31,66592853408 |
2544,5 |
73,9 |
125 |
|
|
-0,000653665230622 |
-0,000610761805658 |
-0,000132657804761 |
-0,000121455643564 |
2,95875586612899E-05 |
-0,000190411335324 |
5,07735233202478E-05 |
0,00042293874894 |
5,98246062256454E-05 |
0,000201096638008 |
0,000199121556183 |
0,000270357448637 |
0,000419266038568 |
0,000285762999147 |
0,001054448681682 |
0,00012514978077 |
-0,000306259535106 |
-0,000202067895171 |
-0,000340687915848 |
-8,44566772914839E-06 |
-8,80290300137373E-05 |
-0,000591600704604 |
0,000272312020716 |
0,000106270048963 |
0,000206584853825 |
-7,08287799531931E-05 |
-0,000529892499114 |
0,000403941413811 |
0,000244844319788 |
0,000316184773285 |
0,000436603645215 |
-6,88310117311824E-05 |
-0,000303390978323 |
0,000736299111978 |
0,000131386726059 |
-0,000161740681647 |
-7,78048393650604E-05 |
4,92927485989184E-05 |
6,36760024223849E-05 |
-4,81912213106153E-05 |
-0,000522748197485 |
-0,000176277404436 |
-0,000308780301129 |
-0,000243942539453 |
-0,000215139790865 |
7,42503999195571E-05 |
-0,000186362831508 |
|
2459 |
31,4 |
49,3355855155593 |
92,1 |
119,721937610141 |
2739,2 |
82,2 |
217,1 |
66219760 |
|
|
1 |
2459 |
31,4 |
49,3355855155593 |
92,1 |
119,721937610141 |
2739,2 |
82,2 |
217,1 |
|
|
-0,000902478724329 |
0,001628642312521 |
0,000349687272137 |
0,000473002529521 |
-0,000403994009936 |
-0,000908132084075 |
0,000117547234522 |
-0,001772560281736 |
-0,00070181490724 |
0,001189467943788 |
-0,001609384807679 |
0,000606200387742 |
-0,000586441623136 |
-0,001256559198818 |
0,001233342992108 |
-0,001083388454533 |
0,001723419482149 |
-4,55765320113936E-05 |
-5,28225623713588E-05 |
0,001705738382101 |
-0,000386552924084 |
-0,001253584227102 |
-0,002054312906585 |
-0,0005737963165 |
-0,001235179104748 |
0,001000222736913 |
-0,000824594248476 |
0,000903700652787 |
0,000292549686739 |
0,001935850168573 |
-0,00174593531304 |
0,000598892925009 |
0,001569547698826 |
-0,001103738010318 |
1,94905522201604E-05 |
0,001855551791183 |
0,001358829989389 |
0,001025498246777 |
-0,000408696046831 |
-0,000162934946637 |
-0,001409208103734 |
-9,15026170353345E-05 |
0,001592132392382 |
0,000266124906206 |
-0,000404683471808 |
0,000497572933988 |
-0,000965141794816 |
|
2025 |
18,5 |
29,0946885704724 |
73,3 |
68,712695692187 |
2272,6 |
175,8 |
56 |
16022288 |
|
|
1 |
2025 |
18,5 |
29,0946885704724 |
73,3 |
68,712695692187 |
2272,6 |
175,8 |
56 |
|
|
4,24565578703735E-05 |
-1,9902128476736E-05 |
-2,10073433570498E-05 |
2,55751467252061E-05 |
-1,85708202257557E-06 |
3,86158832457596E-05 |
-2,06272745717632E-05 |
-1,46972835879853E-05 |
2,00151496672287E-05 |
5,39897337085254E-05 |
-5,75558297318363E-08 |
6,02792706320892E-06 |
-3,22905746513739E-05 |
3,55398408466724E-05 |
-2,00954209639368E-05 |
3,62071388039116E-06 |
1,92770607198062E-07 |
1,13231992197812E-05 |
6,00346288123659E-05 |
-1,89624134050942E-06 |
2,16167813932883E-06 |
2,71573204386057E-05 |
-2,61122847440989E-05 |
-2,08195978865305E-06 |
-1,90209527269728E-05 |
7,65659998325353E-05 |
-2,71190884595411E-05 |
-1,96391239628767E-05 |
3,3747536372861E-05 |
2,94450115096778E-05 |
-3,82189862478311E-06 |
1,0608233206798E-06 |
8,59536302409583E-06 |
-2,22505496550156E-05 |
1,10915564936261E-05 |
5,08937528528275E-06 |
-1,02563830354691E-05 |
6,00603102128164E-06 |
-5,51258146959045E-07 |
-1,31713129368893E-05 |
-3,02691001114074E-05 |
1,44045477339042E-05 |
-4,95042669997509E-05 |
-3,76402831578035E-05 |
4,13174930279267E-06 |
-8,85075125279012E-05 |
-3,44716644415958E-05 |
|
5848 |
47,4 |
48,702930646456 |
157,3 |
108,421145301288 |
2382,5 |
218,6 |
142,6 |
58255625 |
|
|
1 |
5848 |
47,4 |
48,702930646456 |
157,3 |
108,421145301288 |
2382,5 |
218,6 |
142,6 |
|
|
-4,60908869751453E-05 |
0,000765329254411 |
-0,000626845520899 |
-0,000480305100063 |
0,000186182673197 |
8,4492076254733E-05 |
0,000806672756313 |
-3,63195227902483E-05 |
-0,000205608260844 |
-4,244912304443E-05 |
0,000196374610996 |
-0,000266913437942 |
-0,00021750459246 |
0,000102867830123 |
-0,000371608507553 |
-9,67941530129754E-06 |
0,000142168168762 |
0,000176202004622 |
0,00049564056271 |
-0,000322733262203 |
-4,43833196971399E-05 |
1,96990819249962E-05 |
-8,31784522540466E-05 |
-5,22020872354765E-06 |
0,000457649319717 |
-0,000360157537162 |
-7,89111798730892E-05 |
0,000111506313647 |
-9,3080032547168E-05 |
0,000248918783259 |
0,000124402023626 |
-2,10706207033177E-05 |
-0,000755732591769 |
0,000183574664685 |
0,000138208963399 |
-0,000516936311153 |
-0,00017053037256 |
-0,000152445204042 |
-0,00018316017297 |
0,000214444992184 |
-0,000115471526759 |
-0,000270270259385 |
9,17142297351528E-05 |
0,000384339558753 |
9,50063004380869E-05 |
6,67527101434886E-05 |
0,000384458540771 |
|
4315 |
33,1 |
6,33116700239002 |
90,9 |
80,4384280112396 |
2438 |
154,1 |
230,1 |
53882950 |
|
|
1 |
4315 |
33,1 |
6,33116700239002 |
90,9 |
80,4384280112396 |
2438 |
154,1 |
230,1 |
|
|
0,000556689734822 |
-0,001152523857498 |
-0,000320476714202 |
-0,000212279301943 |
0,000249608231761 |
0,000582437020109 |
-0,000169366777262 |
0,000670783366627 |
0,00054141090313 |
8,16838852596351E-05 |
0,000654786374644 |
-0,000438901165603 |
-0,000328859745091 |
0,000485245942532 |
-0,00080117802777 |
0,000797840456603 |
-0,000951357936217 |
-0,000221364352758 |
0,00026344679621 |
-0,000473466186264 |
-0,000224984287538 |
0,000845996871891 |
0,000410248898312 |
-1,96594374452783E-05 |
3,1243048492537E-05 |
0,000531436815376 |
-0,000690479964658 |
-0,000452480125296 |
-5,15236105775333E-05 |
-0,000173545119929 |
0,001419032592438 |
-0,000556950204893 |
-0,001108681295618 |
0,000322949681592 |
-8,47396067590859E-05 |
-0,000738302853542 |
-0,000994381326105 |
3,82267463505492E-05 |
0,000180139557798 |
7,97801031196465E-05 |
-0,000109258247945 |
0,001139806874364 |
-0,001073358501446 |
-0,000459879888524 |
0,001054861780045 |
0,000597177849793 |
0,000273165003616 |
|
4486 |
20,4 |
37,7865246139613 |
110,3 |
159,553367007669 |
0 |
129,9 |
318,5 |
77747844 |
|
|
1 |
4486 |
20,4 |
37,7865246139613 |
110,3 |
159,553367007669 |
0 |
129,9 |
318,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4884 |
36,4 |
32,4626192266842 |
128,6 |
69,2271554042684 |
2361,6 |
206,3 |
148,9 |
35508643 |
|
|
1 |
4884 |
36,4 |
32,4626192266842 |
128,6 |
69,2271554042684 |
2361,6 |
206,3 |
148,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-25412846,7245762 |
b0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190,285538198715 |
b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155163,72526457 |
b2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wektor |
|
-317152,302986504 |
b3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wsółczynników |
b |
11222,5220969362 |
b4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regresji |
|
394599,454806803 |
b5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wielorakiej |
|
3406,8272265522 |
b6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11288,3307723463 |
b7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145228,07263265 |
b8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) H0: istnieje liniowa zeleżność między y a x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
X4 |
X5 |
X6 |
X7 |
X8 |
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2841 |
16,4 |
79,7869939420229 |
31,8 |
87,2680773122767 |
4620 |
135,3 |
114 |
39131562 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2180 |
23,8 |
207,10964641474 |
125 |
264,091587130816 |
4280,9 |
350 |
86,9 |
37004970 |
49778304,5980845 |
203403471549962 |
2216002300215,92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2747 |
23,7 |
53,5103498873864 |
106,7 |
75,5068032600636 |
2734,4 |
0 |
92,1 |
22591462 |
15499837,6033479 |
400660596468516 |
167052618713525 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2478 |
17 |
20,1904335052338 |
108,3 |
30,0335531559076 |
4042 |
57,8 |
55 |
13759752 |
6770049,69158899 |
826349534325512 |
473349369519461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5636 |
26,1 |
19,8563933998921 |
166,7 |
66,8666886887359 |
3220,2 |
185,5 |
165,2 |
44392145 |
38724556,2293333 |
10292614786873,2 |
78779813176111,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4237 |
34,1 |
20,5830655051373 |
133,3 |
38,1520431394949 |
4217,1 |
167,5 |
109,6 |
25219360 |
22881970,3849489 |
159627439655336 |
106027914549821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5353 |
29,1 |
11,4812519776432 |
187,5 |
66,8941156680454 |
3054,6 |
335,1 |
134,1 |
26188480 |
38644613,7543701 |
9786061006680,45 |
87009078556929,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4913 |
31,8 |
24,2594891497557 |
230,8 |
34,9543050232145 |
3015,3 |
120 |
130,2 |
21057900 |
19681288,4258458 |
250749038943128 |
209046652121374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4919 |
23,9 |
91,6091370640629 |
185,7 |
131,354019682081 |
4007 |
102,4 |
179,6 |
49066396 |
44983822,5965117 |
89633118745694,7 |
183603863074870 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5092 |
26,2 |
14,7573654098553 |
213,3 |
85,8810741802957 |
4524 |
180,8 |
156 |
36933810 |
51332429,3324139 |
250148501400210 |
2009205035742,73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4559 |
34,2 |
57,973806990563 |
213,3 |
73,0586484532835 |
3597,7 |
180,1 |
128,1 |
34536300 |
26490891,6493408 |
81458820858966,4 |
960489578258,894 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3944 |
20,2 |
40,2100589062459 |
210 |
67,5306461019375 |
3870 |
110,6 |
81,1 |
17825210 |
20934427,1187037 |
212632349573605 |
312976282431096 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5052 |
10,6 |
42,2439443832825 |
220,8 |
52,345290299851 |
3146 |
94,4 |
101,9 |
18436494 |
13511040,4277547 |
484233460218348 |
291721334166673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2947 |
22,4 |
44,9185523022565 |
217,5 |
32,5464348142376 |
4867 |
187,8 |
50,2 |
7794143 |
5652699,75946359 |
891837348988796 |
768520522657854 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5564 |
18,4 |
23,9927768384777 |
360 |
75,0948740984759 |
3328,9 |
100,5 |
107,8 |
26745880 |
32695105,0852963 |
7959398618058,84 |
76921068632197,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4907 |
28,2 |
97,9864538934904 |
198,7 |
145,247968987201 |
3506,9 |
136,8 |
204,3 |
43659878 |
51526297,754134 |
256318564707541 |
66317118286490 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4601 |
29,5 |
36,5743773884186 |
128,2 |
96,192518050565 |
3520 |
202,4 |
97,8 |
40158980 |
36316676,9142799 |
640530049145,15 |
21554053223780,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5460 |
22,7 |
80,8584617934246 |
156,5 |
118,09062336688 |
4173,3 |
194,5 |
134,6 |
35824870 |
37819692,7864468 |
5305407790841,68 |
95187242377,6217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4056 |
17,1 |
18,9504884607493 |
107,1 |
46,6442494104057 |
5155,6 |
287,4 |
100,3 |
23399975 |
26984667,9643763 |
72789525020842,5 |
146806438991377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6001 |
24 |
1,02936446214802 |
148,6 |
88,2289148365339 |
2760,1 |
89,8 |
188,9 |
49179649 |
53459728,2146891 |
321964975992095 |
186685857009649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7118 |
46,7 |
73,4387019607236 |
208,3 |
114,855984018892 |
3616,5 |
127,4 |
147 |
37397680 |
42663708,9611626 |
51084801556603,2 |
3539418740350,82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6880 |
22,1 |
33,0758328944064 |
47,5 |
81,2697545172201 |
3585 |
125,5 |
235,1 |
22132330 |
49210711,1503575 |
187535645029672 |
179131876314800 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3860 |
43,2 |
62,6307190762425 |
225 |
48,5941483062339 |
3035 |
100,8 |
71,3 |
-934540 |
5693889,44496707 |
889378897210257 |
1,32866706846957E+015 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8180 |
24,7 |
11,102107438614 |
196,1 |
57,7003740079656 |
3324,3 |
135,3 |
186,7 |
38524090 |
41391154,8219069 |
34513382193840,9 |
9046525761383,59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2627 |
12,3 |
61,0927927644369 |
190 |
47,5991621155199 |
3873,4 |
253,3 |
43,8 |
12701906 |
951038,24764301 |
1194760479423052 |
520498658922019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4648 |
36,9 |
28,6657425043111 |
165,3 |
104,117013916873 |
4606,7 |
101,2 |
181,2 |
64121521 |
58197272,3172631 |
514424432121159 |
818256053822006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5160 |
18,4 |
65,7493129514275 |
69,2 |
55,5184482120257 |
3382,2 |
103,3 |
66,1 |
7285930 |
2543872,3158111 |
1,08718400121135E+015 |
796956370714936 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2525 |
30,9 |
44,4839873501485 |
240 |
83,9202977524191 |
3180 |
198,3 |
66 |
24112972 |
24219532,7458697 |
127617982968678 |
130036931790377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1797 |
37,5 |
88,6953783215912 |
240 |
103,175624076385 |
4748 |
162 |
36,4 |
13316749 |
19314869,9998128 |
262487814932700 |
492822093737117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8450 |
28,9 |
112,51115295284 |
300 |
254,125288880438 |
4215,5 |
247,6 |
302,1 |
143678152 |
109670455,151699 |
5498831948259050 |
1,16989763416185E+016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4343 |
22,2 |
367,592145906398 |
340 |
449,819257138886 |
4613,2 |
176,6 |
336,9 |
104513701 |
110226825,82216 |
5581655839765699 |
4760635038100832 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3425 |
35,2 |
127,865505266513 |
200 |
161,333246676536 |
4099,2 |
161 |
82,3 |
37709407 |
33789278,3045173 |
2982761795888,51 |
4809517856225,52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4089 |
29,4 |
208,180566727682 |
176 |
255,812988206292 |
4472 |
0 |
116,3 |
49860570 |
48946283,961258 |
180363241644053 |
205756770707671 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2694 |
39,2 |
59,6147647569145 |
311,1 |
65,9440794433083 |
3304,8 |
194,1 |
61,2 |
14778679 |
14125970,6978113 |
457548142825281 |
430050820248534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1479 |
33,3 |
68,2602990556162 |
200 |
75,7957543243967 |
4168 |
202 |
26,6 |
8713990 |
10883059,7704703 |
606798775790788 |
718366271183375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3700 |
45,2 |
118,253343105095 |
180 |
187,459649020875 |
3498,3 |
53,2 |
123,5 |
40385260 |
51246129,1803125 |
247426088270577 |
23706326440025,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6761 |
40,3 |
61,4527146076234 |
200 |
128,351062208268 |
3250,4 |
118,7 |
138 |
47598635 |
47983615,6585796 |
155432820167049 |
145981714677481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5176 |
18,7 |
19,9538506651253 |
152,5 |
100,104544370153 |
3083,3 |
128,3 |
200,5 |
38045760 |
54428648,2321899 |
357675186988599 |
6397936690281,03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4043 |
27,2 |
30,5494250424987 |
160,9 |
55,5436497715258 |
3288,4 |
103,6 |
116,2 |
13251010 |
22859292,0093599 |
160201008181606 |
495745173928441 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2528 |
28,3 |
15,9344286274649 |
131,4 |
38,7974076062792 |
3004,5 |
196,6 |
79,4 |
14317200 |
15175970,2969472 |
413730871623669 |
449403778500038 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6413 |
33 |
24,814458839007 |
65 |
31,66592853408 |
2544,5 |
73,9 |
125 |
17212920 |
13939105,2703878 |
465577304649108 |
335015392433307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2459 |
31,4 |
49,3355855155593 |
92,1 |
119,721937610141 |
2739,2 |
82,2 |
217,1 |
66219760 |
54345013,9132253 |
354518746603598 |
942699649546792 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025 |
18,5 |
29,0946885704724 |
73,3 |
68,712695692187 |
2272,6 |
175,8 |
56 |
16022288 |
14411782,2232879 |
445402599632376 |
380018285693883 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5848 |
47,4 |
48,702930646456 |
157,3 |
108,421145301288 |
2382,5 |
218,6 |
142,6 |
58255625 |
43450602,7464118 |
62952434844771,8 |
517074822986646 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4315 |
33,1 |
6,33116700239002 |
90,9 |
80,4384280112396 |
2438 |
154,1 |
230,1 |
53882950 |
54759653,6440969 |
370304900549455 |
337332153434623 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4486 |
20,4 |
37,7865246139613 |
110,3 |
159,553367007669 |
0 |
129,9 |
318,5 |
77747844 |
78541042,0139411 |
1,85112449272377E+015 |
1,78349944848319E+015 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4884 |
36,4 |
32,4626192266842 |
128,6 |
69,2271554042684 |
2361,6 |
206,3 |
148,9 |
35508643 |
31627892,9484782 |
15120064817363,8 |
59331620,0674245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35516345,7021277 |
|
2,63236297303534E+016 |
3,07091471582822E+016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y średnie |
|
SSR |
Syy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
47 |
liczba obserwacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
8 |
liczba zmiennych niezależnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Źródło zmienności |
Suma kwadratów odchyleń |
Liczba stopni swobody |
Średnie kwadratowe odchylenia |
Iloraz F |
Istotność F (prawdopodobieństwo) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
2,63E+16 |
8 |
3,29E+15 |
28,51 |
8,668666E-14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd |
4,39E+15 |
38 |
1,15E+14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
3,07E+16 |
46,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo popełnienia błędu I rodzaju (im mniejsza tym lepiej) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Źródło zmienności |
Suma kwadratów odchyleń |
Liczba stopni swobody |
Średnie kwadratowe odchylenia |
Iloraz F |
Istotność F (prawdopodobieństwo) |
SSR - suma kwadratów odchyleń regresyjnych (część zmienności wyjaśniana przez model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
SSR |
k |
MSR=SSR/k |
Femp=MSR/MSE |
P(Fk,n-k-1>=Femp) |
SSE - suma kwadratów błędów (część zmienności niewyjaśniona przez model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd |
SSE |
n-k-1 |
MSE=SSE/n-k-1 |
Syy - całkowita suma kwadratów (informacja o ile poszczególne wartości różnią się od średniej) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
Syy |
n-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Falfa,k,n-k-1 |
2,19355932358175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Brak podstaw do odrzucenia H0 ponieaż Femp>Falfa,k,n-k-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pomiędzy Y a przynajmniej jedną ze zmiennych X istnieje zależność liniowa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
8 |
2,63236297303533E+016 |
3290453716294161 |
28,5113999143832 |
8,66866607883599E-14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
38 |
4385517427928906 |
115408353366550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
46 |
3,07091471582822E+016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) H1: współczynnik betaj w równaniu regresyjnym jest równy 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
s(b) |
T |
P(Tn-k-1³ |T|) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b0 |
-25412846,7245762 |
10916910,14 |
-2,32784244 |
0,025344 |
wchodzi do modelu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b1 |
190,285538198715 |
1333,23 |
0,14272474 |
0,887262 |
zero |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b2 |
155163,72526457 |
188722,88 |
0,82217759 |
0,416105 |
zero |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b3 |
-317152,302986504 |
85379,34 |
-3,71462581 |
0,000652 |
wchodzi do modelu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b4 |
11222,5220969362 |
24899,38 |
0,45071493 |
0,654756 |
zero |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b5 |
394599,454806803 |
81118,45 |
4,86448450 |
0,000020 |
wchodzi do modelu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b6 |
3406,8272265522 |
2177,88 |
1,56428325 |
0,126042 |
zero |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b7 |
11288,3307723463 |
22882,06 |
0,49332679 |
0,624621 |
zero |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b8 |
145228,07263265 |
45383,91 |
3,19999061 |
0,002774 |
wchodzi do modelu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Talfa,n-k-1 |
2,02439416391197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wniosek: na model wpływają współczynniki b0, b3, b5, b8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-25412846,7245761 |
10916910,1363086 |
-2,32784243959794 |
0,025344148242958 |
odrzucić |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190,285538198793 |
1333,23447938539 |
0,142724735326762 |
0,887261687412142 |
brak podstaw do odrzucenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155163,725264564 |
188722,883881942 |
0,82217758690901 |
0,416105105567583 |
brak podstaw do odrzucenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-317152,302986489 |
85379,3407820589 |
-3,71462581089797 |
0,000651921214517 |
odrzucić |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11222,522096937 |
24899,3792693222 |
0,450714934519028 |
0,654756357144908 |
brak podstaw do odrzucenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394599,454806789 |
81118,4525552238 |
4,86448449615275 |
0,000020 |
odrzucić |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3406,8272265521 |
2177,88385405973 |
1,56428324687817 |
0,126041780 |
brak podstaw do odrzucenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11288,3307723464 |
22882,0552161016 |
0,493326786677929 |
0,624620836841229 |
brak podstaw do odrzucenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145228,072632654 |
45383,9058741123 |
3,19999060978782 |
0,002773621577291 |
odrzucić |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) ocena jakości regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik regresji wielorakiej |
0,8572 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Skorygowany współczynnik determinacji wielorakiej |
0,8271 |
|
Wniosek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model opisuje rzeczywistość w sposób dobry |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,925846542133117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,85719181957985 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,827126939491397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
10742827,9966939 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|