Obliczenia hydrauliczne: |
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
szerokość rowu |
h= |
1,3 |
głebokość rowu |
n= |
1,5 |
nachylenie skarp |
s= |
0,64 |
rezerwa zależna od rodzaju użytków. |
Q3L= |
0,644 |
[m3/s] |
|
|
|
|
|
|
|
|
|
|
|
|
|
Napełnienie rowu: |
|
|
|
|
t= |
0,66 |
[m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Obliczenie pola powierzchni przekroju poprzecznego. |
F=b∙t+n∙t2[m2] |
|
|
|
|
|
|
F= |
0,98 |
m2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Obliczenie obwodu zwilżonego. |
O=b=2∙t∙√(n2+1)m |
|
|
|
|
|
|
O= |
2,9 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Obliczenie promienia hydraulicznego. |
R=F/0 [m] |
|
|
|
|
|
|
R= |
0,34 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Obliczenie współczynnika prędkości wzorem kuttera lub Wzorem Bazina. |
c= |
100∙√R |
|
|
|
c= |
87∙√R |
|
|
|
m+√R |
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
γ,m- współczynniki szorstkości koryta rowu, dla dobrze utrzymanego koryta. |
m= |
1,5 |
|
|
|
γ= |
1,2 |
|
|
|
ck= |
28,04 |
|
|
|
cb= |
28,49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Obliczenie prędkości przepływu wody w rowie. |
v=c∙√(R∙lmin) [m/s] |
|
|
|
|
|
|
v= |
0,67 |
[m/s] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. Obliczenie przepływu rzeczywistego (Qobl.) |
|
|
|
|
|
|
|
|
|
|
|
Qobl.= |
F∙v [m3/s] |
|
KONTROLA: |
|
Qobl.= |
0,65 |
[m3/s] |
|
Róznica: |
1,7 |
% |
|
Q3L= |
0,644 |
[m3/s] |
|
przepływ miarodajny. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obliczenia dla doboru odpowiedniego typu ubezpieczenia koryta rowu. |
1. Darniowanie na płask. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax |
1,00 |
ms-1 |
|
współ czynnik szorstkości γ= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,644 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,509433260201478 |
|
|
|
∆= |
4,114 |
|
|
|
t2= |
-0,842766593534812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t= |
0,509433260201478 |
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,33678774108322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
0,275591996944264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
20,7910931770958 |
|
|
|
|
drugi współczynnik |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
8,394 |
‰ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Płotek, darniowanie korzuchowe, kiszka faszynowa. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax= |
1,25 |
ms-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,644 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,509433260201478 |
|
|
|
∆= |
4,114 |
|
|
|
t2= |
-0,842766593534812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,33678774108322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
22,6119539002264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
F |
[m] |
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
8,949 |
‰ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Płotek podwójny, bardzo staranne darniowanie, płytki chodnikowe. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax= |
1,50 |
ms-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,644 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,509433260201478 |
|
|
|
∆= |
4,114 |
|
|
|
t2= |
-0,842766593534812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,33678774108322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
22,6119539002264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
F |
[m] |
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
12,886 |
‰ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Darniowanie korzuchowe. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax |
1,25 |
ms-1 |
|
współ czynnik szorstkości γ= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,5152 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,442631654719864 |
|
|
|
∆= |
3,3412 |
|
|
|
t2= |
-0,775964988053198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t= |
0,442631654719864 |
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,09593112723594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
0,245809603810518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
19,8651136149981 |
|
|
|
|
drugi współczynnik |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
16,108 |
‰ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Płotek, darniowanie korzuchowe, kiszka faszynowa. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax= |
1,25 |
ms-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,644 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,509433260201478 |
|
|
|
∆= |
4,114 |
|
|
|
t2= |
-0,842766593534812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,33678774108322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
22,6119539002264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
F |
[m] |
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
8,949 |
‰ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Płotek podwójny, bardzo staranne darniowanie, płytki chodnikowe. |
|
|
|
|
|
|
|
|
|
|
współ czynnik szorstkości m= |
2,00 |
|
vmax= |
1,50 |
ms-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qm= |
F∙vmax |
[m3∙s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
Qm |
[m2] |
|
|
|
|
|
|
|
vmax |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
0,644 |
m∙s-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b= |
0,5 |
|
n= |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n∙t2+b∙t=F [m2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
0,509433260201478 |
|
|
|
∆= |
4,114 |
|
|
|
t2= |
-0,842766593534812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O=b+2∙t∙√(n2+1) [m] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O= |
2,33678774108322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c= |
100∙√R |
|
|
|
|
c= |
87∙√R |
|
|
m+√R |
|
|
|
|
γ+√R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ck= |
22,6119539002264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R= |
F |
[m] |
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Igr= |
12,886 |
‰ |
|
|
|
|
|
|