ĆWICZENIE PROJEKTOWE NR 1 (2) doc


ĆWICZENIE PROJEKTOWE NR 1.

(Obliczyć osiadanie punktu A podstawy fundamentu

i osiadanie warstwy nr 1 pod tym punktem).

Wydział Budownictwa sporządził:

Lądowego i Wodnego sprawdziła: dr inż..

  1. Cel ćwiczenia

Celem ćwiczenia jest sprawdzenie jednego z warunków II stanu granicznego (stanu użytkowania budowli). Obliczenie wielkości osiadań pod wskazanym punktem A, wywołanych obciążeniem zewnętrznym -fundamentem oraz ciężarem własnym gruntu. Wyznaczę osiadanie średnio-końcowe pod zadanym punktem i sprawdzę czy:

0x01 graphic

Gdzie w moim przypadku wg PN-81/B-03020 Sdop=5[cm] (ponieważ jest to budynek typu hala przemysłowa).

  1. Opis obiektu i jego konstrukcji.

Rzut obiektu

0x01 graphic
SKALA: 1:200 [m]

Przekrój a-a

0x01 graphic

SKALA: 1:200 [m]

Projektowany budynek jest wolnostojącą halą magazynową posadowioną na ławie fundamentowej i dwóch stopach. Inwestorem jest firma „Bud-Wet” i ona też jest jej wykonawcą jak i zleceniodawcą do badania osiadania gruntu. Miejscem inwestycji są Kliniska k/Szczecina. Głębokość posadowienia wynosi 0,80m i wynosi tyle, co głębokość przemarzania wynosząca w tym rejonie 0,80m. W związku z przeznaczeniem hali na magazyn materiałów budowlanych, należy przyjąć odpowiednio wysokie obciążenie. Pamiętać należy również o pracującym wewnątrz ciężkim sprzęcie, jakim są różnego typu i wielkości samochody dostawcze, wózki widłowe, itp.

  1. Charakterystyka warunków gruntowo-wodnych oraz ustalenie wyprowadzonych wartości parametrów geotechnicznych.

Na danym terenie nie występuje makroniwelacja, a poziom zwierciadła wody gruntowej wynosi 3,00m i jest on poniżej poziomu posadowienia w warstwie piasku pylastego, więc nie będzie problemu z wypływem wody podczas wykonywania wykopów pod fundamenty. Na danym obszarze nie występują żadne zaburzenia gruntu w ciągu roku (okresowe zalewanie, duże opady śniegu, możliwość przejść lawin, itp.). Dany grunt ma następujący skład przebadany nawierceniem jednego otworu wiertniczego:

Tabela 1 (parametry geotechniczne dobrane metodą B na podstawie wskaźników IL oraz ID)

Numer warstwy

Symbol gruntu

Rodzaj gruntu

Grupa konsolidacyjna

Miąższość warstwy

Wskaźniki

ρs

γs

ρ

γ

wn

M0

M

[m]

ID

IL

tm-3

kN/m3

tm-3

kN/m3

%

kPa

[-]

kPa

1

P

piasek pylasty

,

0,5

-

2,65

26,00

1,75

17,17

16

61250

0,80

76563

2

G

glina pylasta

C

,

-

0,2

2,68

26,29

2,10

20,60

20

28750

0,60

47917

3

I

ił pylasty

D

,

-

0,1

2,75

26,98

1,90

18,64

33

31250

0,80

39063

4

I

D

10,0

-

0,0

2,72

26,68

2,00

19,62

27

40000

0,80

50000

Dodatkowo warstwa numer jeden jest o stanie zawilgocenia W.

Do uzupełnienia tabeli posłużyłem się dodatkowo następującymi wzorami:

0x01 graphic
,

0x01 graphic
,

0x01 graphic
,

gdzie za g przyjąłem 9,810x01 graphic
.

Rozkład warstw gruntu

0x01 graphic

Skala 1:100 [m]

  1. Niezbędne założenia teoretyczne podłoża budowlanego.

-wszystkie obliczenia są wykonane według PN-81/B-03020 -„Posadowienie bezpośrednie budowli” oraz PN-B-02481 -„Geotechnika”

- traktuje się je jako jednorodną półprzestrzeń liniowo-odkształcalną, tzn. stosuje się metody obliczeniowe teorii sprężystości, lecz przy różnych wartościach geotechnicznych parametrów odkształcalności gruntów: γ oraz M0 lub E0 dla obciążeń pierwotnych i M lub E dla obciążeń wtórnych,

-jest materiałem izotropowym,

-w praktyce związek między naprężeniem, a odkształceniem jest liniowy i obowiązuje prawo Hooke'a,

-obowiązuje zasada superpozycji, a zatem sumują się naprężenia od różnych obciążeń,

-zgodnie z zasadą Saint-Ventainte obciążenie przekazuje się tylko do strefy obciążeń aktywnych,

-osiadanie średnie końcowe podłoża budowlanego wyznaczamy zakładając:

  1. analog geometryczny (osiada w jednym kierunku, w kierunku osi z tak, że wokół grunt się nie rusza,

  2. osiadanie podłoża jest równe sumie osiadań jego warstw do głębokości strefy aktywnej.

-do wyznaczenia naprężeń od obciążeń zewnętrznych korzysta się z rozwiązania Boussinesq'a dla półprzestrzeni sprężystej oraz z metody punktów narożnych, jak i z podstawowych wzorów,

-przyjmuje się przy wyznaczaniu σzq, że nadfundamentowa konstrukcja budowli jest doskonale wiotka,

-stopy fundamentowe pod pojedynczymi słupami oraz ławy pod ścianami konstrukcyjnymi traktuje się jako doskonale sztywne,

-należy uwzględnić warunki występujące w stadium realizacji oraz eksploatacji budowli.

  1. Przyjęcie potrzebnych do dalszych obliczeń parametrów geotechnicznych metodą B.

5.1 Niezbędne gotowe wzory do obliczeń szukanych parametrów geotechnicznych metodą B na podstawie podanych wyżej polskich norm:

-ciężar objętościowy szkieletu gruntowego γd

0x01 graphic
,

-gęstość objętościowa ρ­d

0x01 graphic
,

-porowatość n

0x01 graphic
,

-ciężar objętościowy gruntu całkowicie nasyconego wodą γsr

0x01 graphic
,

-gęstość objętościowa gruntu przy całkowitym nasyceniu porów wodą ρsr

0x01 graphic
.

5.2 Przyjęte wartości niektórych parametrów użytych w dalszej części obliczeń:

-gęstość wody w porach gruntu ρw

0x01 graphic
,

-przyśpieszenie grawitacyjne ziemi g

0x01 graphic
.

5.3 Obliczenia tych parametrów dla poszczególnych rodzajów gruntu:

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

Tabela 2 (zebrane parametry geotechniczne dobrane metodą B na podstawie przyjętych parametrów z tabeli nr 1)

Numer warstwy

Symbol gruntu

Rodzaj gruntu

Grupa konsolidacyjna

Miąższość warstwy

0x01 graphic

0x01 graphic

n

0x01 graphic

0x01 graphic

[m]

g/cm3

KN/m3

[-]

g/cm3

KN/m3

1

P

piasek pylasty

,

1,51

14,80

0,43

1,94

19,04

2

G

glina pylasta

C

,

1,75

17,17

0,35

2,01

20,52

3

I

ił pylasty

D

,

1,43

14,02

0,48

1,91

18,74

4

I

D

10,0

1,57

15,45

0,42

2,00

19,60

  1. Naprężenia w ośrodku gruntowym.

w businesku zmienna z zmienia się więc jest żłe bo u mnie nie zmienia się!!!!!!!!!!!!!!!!!!!

6.1 Wyznaczenie naprężeń pierwotnych σzρ:

Naprężenia pierwotne w gruncie obliczamy ze wzoru:

0x01 graphic
,

gdzie:

σzρ -naprężenia pierwotne całkowite,

σ`zρ -naprężenia pierwotne efektywne,

U -ciśnienie porowe.

6.1.1 Obliczenie naprężeń pierwotnych całkowitych σzρ:

0x01 graphic
,

gdzie:

0x01 graphic
-ciężar objętościowy gruntu,

hi -głębokość poniżej poziomu terenu.

Obliczenia dokonuje dla kolejnych z (z=0 jest na poziomie terenu) idąc wgłęb ziemi. Ponieważ w piasku pylastym występuje podciąganie kapilarne, jestem zmuszony do podniesienia zwierciadła wody gruntowej o 1,5[m] i od tego poziomu podstawiać do wzoru na naprężenia pierwotne całkowite ciężaru objętościowego gruntu całkowicie nasyconego wodą. Poziom zwierciadła wody kapilarnej wynosi 1,5[m].

dla z=0[m]0x01 graphic
,

dla z=0,8[m]0x01 graphic
,

dla z=1,5[m]0x01 graphic
,

dla z=3[m]0x01 graphic
,

dla z=4[m]0x01 graphic
,

dla z=5[m]0x01 graphic
,

dla z=6[m]0x01 graphic
,

dla z=6,5[m]0x01 graphic
,

dla z=7[m]0x01 graphic
,

dla z=8[m]0x01 graphic
,

dla z=9[m]0x01 graphic
,

dla z=9,5[m]0x01 graphic
,

dla z=10[m]0x01 graphic
,

dla z=11[m]0x01 graphic
,

dla z=12[m]0x01 graphic
,

dla z=13[m]0x01 graphic
,

dla z=14[m]0x01 graphic
,

dla z=15[m]0x01 graphic
.

6.1.2 Obliczenie ciśnień porowych U:

Obliczenie ciśnień porowych wykonuje się jedynie dla warstw znajdujących się poniżej Z.W.K.

0x01 graphic
,

gdzie:

hi`­ -głębokość poniżej Z.W.K.,

0x01 graphic
.

dla z=1,5[m]0x01 graphic
,

dla z=3[m]0x01 graphic
,

dla z=4[m]0x01 graphic
,

dla z=5[m]0x01 graphic
,

dla z=6 [m]0x01 graphic
,

dla z=6,5[m]0x01 graphic
,

dla z=7[m]0x01 graphic
,

dla z=8[m]0x01 graphic
,

dla z=9[m]0x01 graphic
,

dla z=9,5[m]0x01 graphic
,

dla z=10 [m]0x01 graphic
,

dla z=11[m]0x01 graphic
,

dla z=12[m]0x01 graphic
,

dla z=13[m]0x01 graphic
,

dla z=14[m]0x01 graphic
,

dla z=15[m]0x01 graphic
.

6.1.3 Obliczenie naprężeń pierwotnych efektywnych σ`z­ρ:

0x01 graphic
(wzór wyżej omówiony).

dla z=0[m]0x01 graphic
,

dla z=1,5[m]0x01 graphic
,

dla z=3[m]0x01 graphic
,

dla z=4[m]0x01 graphic
,

dla z=5[m]0x01 graphic
,

dla z=6[m]0x01 graphic
,

dla z=6,5[m]0x01 graphic
,

dla z=7[m]0x01 graphic
,

dla z=8[m]0x01 graphic
,

dla z=9[m]0x01 graphic
,

dla z=9,5[m]0x01 graphic
,

dla z=10[m]0x01 graphic
,

dla z=11[m]0x01 graphic
,

dla z=12[m]0x01 graphic
,

dla z=13[m]0x01 graphic
,

dla z=14[m]0x01 graphic
,

dla z=15[m]0x01 graphic
.

6.2 Wyznaczanie naprężeń od obciążenia zewnętrznego σzq:

Wprowadzam nową oś z`[m], która swą wartość z`=0[m] przyjmuje dla z=0,8[m] (głębokość posadowienia budowli).

Schemat obciążeń

0x01 graphic

0x01 graphic
Naprężenia wywołane obciążeniem I zostały policzone metodą Boussinesq`a, ponieważ 0x01 graphic
, a 2a=6[m]. Stąd 0x01 graphic
. Zamieniam obciążenie q=200[kPa] na siłę skupioną 0x01 graphic
. Potrzebny wzór to:

0x01 graphic
.

Naprężenia wywołane obciążeniem II zostały policzone metodą Boussinesq`a, ponieważ 0x01 graphic
, a 2a=6[m]. Stąd 0x01 graphic
. Zamieniam obciążenie q=200[kPa] na siłę skupioną 0x01 graphic
. Potrzebny wzór to:

0x01 graphic
.

Naprężenia wywołane obciążeniem III zostały policzone wg wzoru:

0x01 graphic
,

gdzie q=220[kPa], L/B=8, a wartość ηm odczytałem z nomogramu PN-81/B-03020-Z2-12.

Tabela 3 (obliczenie naprężenia od obciążenia zewnętrznego -fundament i sąsiedzi )

Obciążenie I

Obciążenie II

Obciążenia III

z

z`

σzqI

σzqII

0x01 graphic

ηm

σzqIII

σzq

[m]

[m]

[kPa]

[kPa]

[-]

[-]

[kPa]

[kPa]

0

0,8

0

0

0

0

1,00

220,00

220,00

1,5

0,7

0,002

0,002

0,23

0,97

213,40

213,40

3

2,2

0,07

0,06

0,73

0,73

160,60

160,73

4

3,2

0,23

0,17

1,07

0,54

118,80

119,20

5

4,2

0,52

0,39

1,40

0,42

92,40

93,31

6

5,2

0,99

0,74

1,73

0,37

81,40

83,13

6,5

5,7

1,30

0,97

1,90

0,32

70,40

72,67

7

6,2

1,67

1,25

2,07

0,30

66,00

68,93

8

7,2

2,62

1,96

2,40

0,26

57,20

61,78

9

8,2

3,87

2,90

2,73

0,23

50,60

57,37

9,5

8,7

4,62

3,47

2,90

0,22

48,40

56,49

10

9,2

5,47

4,10

3,07

0,21

46,20

55,76

11

10,2

7,45

5,59

3,40

0,19

41,80

54,84

12

11,2

9,86

7,40

3,73

0,17

37,40

54,66

13

12,2

12,75

9,56

4,07

0,16

35,20

57,50

14

13,2

16,14

12,11

4,40

0,15

33,00

61,25

15

14,2

20,10

15,07

4,73

0,14

30,80

65,97

6.3 Naprężenia podłoża wywołane wykopem i naprężenia minimalne 0x01 graphic
i σzmin:

Naprężenia podłoża wywołane wykopem policzone zostaną metodą punktów narożnych. Naprężenia w tym przypadku spowodowane są powstałym wykopem szerokoprzestrzennym na powierzchni 0x01 graphic
i do głębokości D=0,8[m]. Całościowo wykop przeprowadzony jest w piasku pylastym o gęstości objętościowej 0x01 graphic
. Nie dochodzi on do żadnego z poziomów wody.

0x01 graphic
,

Ogólnie naprężenia w każdym z prostokątów liczymy ze wzoru

0x01 graphic
,

gdzie 0x01 graphic
odczytałem z nomogramu PN-81/B-03020-Z2-11.

Schemat podziału wykopu do metody punktów narożnych

0x01 graphic

Jak wspomniałem naprężenia policzę metodą punktów narożnych, gdzie końcowy wynik naprężeń spowodowanych wykopem liczony będzie wzorem

0x01 graphic
,

gdzie indeksy górne przy współczynnikach rozkładu naprężeń to naroża poszczególnych prostokątów.

Naprężenia minimalne policzone zostały wg wzoru

0x01 graphic
.

0x01 graphic
,

0x01 graphic
.

Tabela 4 (obliczenie naprężenia od wykopu szerokoprzestrzennego i naprężeń minimalnych)

z

z`

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

[m]

[m]

[-]

[-]

[-]

[-]

[-]

[-]

[-]

[-]

[kPa]

[kPa]

[kPa]

0

0,8

0

0

0,25

0

0,25

0

0,25

0

0,25

13,74

13,74

0

1,5

0,7

0,2

0,24

0,20

0,24

0,05

0,25

0,05

0,25

13,47

25,76

12,29

3

2,2

0,63

0,21

0,63

0,21

0,15

0,24

0,15

0,24

12,37

54,32

41,95

4

3,2

0,91

0,20

0,91

0,20

0,22

0,24

0,22

0,24

12,09

73,36

61,27

5

4,2

1,20

0,17

1,20

0,17

0,29

0,23

0,29

0,23

10,99

93,88

82,89

6

5,2

1,49

0,16

1,49

0,16

0,36

0,23

0,36

0,23

10,72

114,4

103,68

6,5

5,7

1,63

0,15

1,63

0,15

0,39

0,23

0,39

0,23

10,44

124,66

114,22

7

6,2

1,77

0,14

1,77

0,14

0,43

0,22

0,43

0,22

9,89

134,03

124,14

8

7,2

2,06

0,13

2,06

0,13

0,50

0,22

0,50

0,22

9,62

152,77

143,15

9

8,2

2,34

0,12

2,34

0,12

0,57

0,21

0,57

0,21

9,07

171,51

162,44

9,5

8,7

2,49

0,11

2,49

0,11

0,60

0,21

0,60

0,21

8,79

180,88

172,09

10

9,2

2,63

0,10

2,63

0,10

0,63

0,21

0,63

0,21

8,52

190,68

182,16

11

10,2

2,91

0,09

2,91

0,09

0,70

0,20

0,70

0,20

7,97

210,28

202,31

12

11,2

3,20

0,08

3,20

0,08

0,77

0,20

0,77

0,20

7,69

229,88

222,19

13

12,2

3,49

0,07

3,48

0,07

0,84

0,20

0,84

0,20

7,42

249,48

242,06

14

13,2

3,77

0,06

3,77

0,06

0,91

0,19

0,91

0,19

6,87

269,08

262,21

15

14,2

4,06

0,05

4,06

0,05

0,98

0,19

0,98

0,19

6,60

288,68

282,08

6.4 Naprężenia wtórne σzs:

Ponieważ 0x01 graphic
przyjmujemy, że naprężenia wtórne są równe 0x01 graphic
.

Tabela 5 (obliczenie naprężenia wtórnego)

z

z`

0x01 graphic

[m]

[m]

[kPa]

0

0,8

0

13,74

1,5

0,7

13,47

3

2,2

12,37

4

3,2

12,09

5

4,2

10,99

6

5,2

10,72

6,5

5,7

10,44

7

6,2

9,89

8

7,2

9,62

9

8,2

9,07

9,5

8,7

8,79

10

9,2

8,52

11

10,2

7,97

12

11,2

7,69

13

12,2

7,42

14

13,2

6,87

15

14,2

6,60

6.5 Naprężenia dodatkowe σzd:

Ponieważ 0x01 graphic
przyjmujemy, że naprężenia dodatkowe są równe 0x01 graphic
.

Tabela 6(obliczenie naprężenia dodatkowego)

z

z`

0x01 graphic

0x01 graphic

σzd

[m]

[m]

[kPa]

[kPa]

[kPa]

0

0,8

0

220,00

13,74

206,26

1,5

0,7

213,40

13,47

199,93

3

2,2

160,73

12,37

148,36

4

3,2

119,20

12,09

107,11

5

4,2

93,31

10,99

82,32

6

5,2

83,13

10,72

72,41

6,5

5,7

72,67

10,44

62,23

7

6,2

68,93

9,89

59,04

8

7,2

61,78

9,62

52,16

9

8,2

57,37

9,07

48,30

9,5

8,7

56,49

8,79

47,70

10

9,2

55,76

8,52

47,24

11

10,2

54,84

7,97

46,87

12

11,2

54,66

7,69

46,97

13

12,2

57,50

7,42

50,08

14

13,2

61,25

6,87

54,38

15

14,2

65,97

6,60

59,37

6.6 Naprężenia całkowite σzt:

Naprężenia całkowite policzone zostały według wzoru

0x01 graphic
.

Tabela 7(obliczenie naprężenia całkowitego)

z

z`

σzmin

σzq

σzt

[m]

[m]

[kPa]

[kPa]

[kPa]

0

0,8

0

0

220,00

220

1,5

0,7

12,29

213,40

225,69

3

2,2

41,95

160,73

202,68

4

3,2

61,27

119,20

180,47

5

4,2

82,89

93,31

176,2

6

5,2

103,68

83,13

186,81

6,5

5,7

114,22

72,67

186,89

7

6,2

124,14

68,93

193,07

8

7,2

143,15

61,78

204,93

9

8,2

162,44

57,37

219,81

9,5

8,7

172,09

56,49

228,58

10

9,2

182,16

55,76

237,92

11

10,2

202,31

54,84

257,15

12

11,2

222,19

54,66

276,85

13

12,2

242,06

57,50

299,56

14

13,2

262,21

61,25

323,46

15

14,2

282,08

65,97

348,05

  1. Sprawdzenie strefy aktywnej podłoża budowlanego.

Tabela 8(obliczenie strefy aktywnej podłoża budowlanego)

z

z`

σzd

0x01 graphic

0,3σzp

[m]

[m]

[kPa]

[kPa]

[kPa]

0

0,8

0

206,26

13,74

4,122

1,5

0,7

199,93

25,76

7,728

3

2,2

148,36

54,32

16,296

4

3,2

107,11

73,36

22,008

5

4,2

82,32

93,88

28,164

6

5,2

72,41

114,4

34,32

6,5

5,7

62,23

124,66

37,398

7

6,2

59,04

134,03

40,209

8

7,2

52,16

152,77

45,831

9

8,2

48,30

171,51

51,453

9,5

8,7

47,70

180,88

54,264

10

9,2

47,24

190,68

57,204

11

10,2

46,87

210,28

63,084

12

11,2

46,97

229,88

68,964

13

12,2

50,08

249,48

74,844

14

13,2

54,38

269,08

80,724

15

14,2

59,37

288,68

86,604

Wniosek:

Warunek 0x01 graphic
jest spełniony na głębokości z`=8,2[m], z=9[m] i tę wartość przyjmuje jako dolną granicę aktywności podłoża, do której biorę pod uwagę wartości naprężeń.

  1. Obliczanie osiadania punku A.

Obliczanie osiadania punktu A obejmuje warstwy znajdujące się poniżej tego punktu, ale powyżej dolnej granicy oddziaływania budowlanego. Osiadanie warstwy obliczono ze wzoru

0x01 graphic
,

w którym σzdi, σzsi -odpowiednio pierwotne i wtórne naprężenie w podłożu pod fundamentem w połowie grubości warstwy i,

hi -grubość i-tej warstwy,

Mi, M0i -edometryczny moduł ściśliwości odpowiednio wtórnej i pierwotnej,

λ -współczynnik uwzględniający stopień odprężenia podłoża po wykonaniu wykopu, w tym przypadku równy 1, bo przewidywany czas wznoszenia budowli będzie dłuższy niż jeden rok.

Wartość całkowitego osiadania punktu A będzie policzona ze wzoru

0x01 graphic
.

Tabela 9(obliczenie osiadania punktu A)

z

z`

h

σzd

σzdśr

M0

SI

σzs

σzsśr

M

SII

S

[m]

[m]

[m]

[kPa]

[kPa]

[kPa]

[m]

[kPa]

[kPa]

[kPa]

[m]

[m]

0

61250

76563

0,8

0

206,26

61250

13,74

76563

1,5

0,7

0,70

199,93

203,10

61250

0,0023210857

13,47

13,61

76563

0,0001243878

0,0024454735

3

2,2

1,50

148,36

174,15

61250

0,0042647755

12,37

12,92

76563

0,0002531249

0,0045179004

4

3,2

1,00

107,11

127,74

61250

0,0020854694

12,09

12,23

76563

0,0001597377

0,0022452071

5

4,2

1,00

82,32

94,72

28750

0,0032944348

10,99

11,54

47917

0,0002408331

0,0035352679

6

5,2

1,00

72,41

77,37

28750

0,0026909565

10,72

10,86

47917

0,0002265376

0,0029174941

6,5

5,7

0,50

62,23

67,32

28750

0,0011707826

10,44

10,58

47917

0,0001103992

0,0012811818

7

6,2

0,50

59,04

60,64

31250

0,0009701600

9,89

10,17

39063

0,0001301103

0,0011002703

8

7,2

1,00

52,16

55,60

31250

0,0017792000

9,62

9,76

39063

0,0002497248

0,0020289248

9

8,2

1,00

48,30

50,23

31250

0,0016073600

9,07

9,35

39063

0,0002392289

0,0018465889

0x01 graphic

0,0219183089

0x01 graphic

0x01 graphic

  1. Wnioski końcowe.

Interesujący nas punkt fundamentów osiądzie pod wpływem naprężeń pierwotnych od gruntu, od wykopu i od obciążenia zewnętrznego -fundament i sąsiedzi o 0x01 graphic
, podczas gdy w tym przypadku wg PN-81/B-03020 dopuszczalna wartość osiadania Sdop=5[cm] (ponieważ jest to budynek typu hala przemysłowa). Nie ma zatem jakichkolwiek przeciwwskazań do budowy projektowanej hali magazynowej wolnostojącej posadowionej na ławie fundamentowej i dwóch stopach w Kliniskach k/Szczecina, gdzie inwestorem i wykonawcą jest firma „Bud-Wet”.

ZAŁĄCZNIKI:

  1. temat ćwiczenia projektowego,

  2. wykres naprężeń stanu pierwotnego, przed rozpoczęciem robót budowlanych, kiedy w podłożu występuje jedynie naprężenia pierwotne,

  3. wykres naprężeń stanu odprężenia podłoża, po wykonaniu wykopów fundamentowych, kiedy w podłożu występują najmniejsze naprężenia,

  4. wykres naprężeń stanu po zakończeniu budowy, kiedy w podłożu występują naprężenia całkowite.

4



Wyszukiwarka

Podobne podstrony:
ĆWICZENIE PROJEKTOWE NR 1 doc
Cwiczenie projektowe nr 1 z TRB masy ziemne
Ćwiczenie projektowe Nr 2
ćwiczenie projektowe nr 1
cwiczenie projektowe nr 2, Budownictwo, Projekty, Mechanika gruntów, Projekty z forum
KM WST Katowice Ćwiczenie projektowe Nr 2 v 03
KM WST Katowice Ćwiczenie projektowe Nr 1 Rysunki Słup
Ćwiczenie projektowe Nr 2 Rysunek
cwiczenie projektowe nr 2A id 1 Nieznany
Ćwiczenie projektowe nr 1, Studia Budownictwo polsl, I semestr, Hydrologia i hydraulika, projekt
Ćwiczenie projektowe nr 4, Technologie Odnowy i Remontów Nawierzchni Drogowych
Ćwiczenie projektowe nr 3 strona tytułowa, Konstrukcje Nawierzchni Drogowych
Cwiczenie projektowe nr 1 z Mec Nieznany
KM WST Katowice Ćwiczenie projektowe Nr 1 Rysunki Słup
ĆWICZENIE PROJEKTOWE NR 3
ĆWICZENIE PROJEKTOWE NR 2

więcej podobnych podstron