Futures. Marking-to-market | ||||||
Problem 55 | ||||||
Tri-Mark receives a $1200,000 from a major contract on December 18. These funds | ||||||
are not needed for six days and, rather than putting them into short-term marketable | ||||||
securities Tri-Mark's Chief Financial Officer (CFO) wants to use these funds to | ||||||
speculate in pork bellies. He purchases 55 contracts. Traded on the | ||||||
Chicago Mercantile Exchange (CME), each pork belly futures contract is for | ||||||
40,000 pounds and requires a $2,150 initial margin and $1,800 maintenance margin. | ||||||
The current futures price for February delivery is $0,5380. The contracts are | ||||||
purchased at this price. | ||||||
(a) What is the initial value of Tri-Mark's margin account ? | ||||||
(b) Immediately after the CFO purchases the contracts, the government issues | ||||||
a major report on dietary fat that is expected to reduce the public's bacon | ||||||
consumption. On succeeding days after the purchase of the contracts, pork | ||||||
belly futures trade at $0,5312, $0,5300, $0,5120, $0,4998, $0,4887, and $0,4880. | ||||||
Compute the changes in the margin account on each of these days. | ||||||
Assuming that Tri-Mark closes its position at the end of sixth day, what | ||||||
is its profit/loss on its speculation ? |
Futures & Options | |||||||||
Problem 56 | |||||||||
A distributor has just purchased DM 375 000 worth of fine German beer for | |||||||||
the central Ohio market and must pay for the beer in 90 days. The distributor | |||||||||
is concerned about changes in the value of the German mark during that | |||||||||
period. It has accumulated the following information: | |||||||||
Today's spot exchange rate: So ($/DM) = 0,5019 | |||||||||
Exchange rate available on three-month futures contract: F1,4 ($/DM) = 0,5028 | |||||||||
Distributor's estimate of the spot exchange rate in three months: S1,4 ($/DM) = 0,5050 | |||||||||
Option information | Call option | Put option | |||||||
Contract size | DM | 62,500.000 | 62,500.000 | ||||||
Exercise price | $/DM | 0.5050 | 0.5060 | ||||||
Premium | $/DM | 0.0010 | 0.0012 | ||||||
(a) If the distributor remains unhedged, how much will he expect to pay | |||||||||
in dollars for the beer ? Draw the payoff pattern. | |||||||||
(b) If currency futures contracts are used to hedge (each contract is for DM | |||||||||
125 000), how much will the distributor pay in dollars for the beer ? Draw | $ | 189375 | |||||||
the payoff pattern for the futures contract and for the hedged position. | |||||||||
(c) If the distributor hedges this exposure with an option, which type of option | 188550 | ||||||||
should he use ? Assuming that the distributor's estimate of the future spot | |||||||||
rate is accurate, should the distributor exercise this option ? If the distributor | |||||||||
exercises the option, how many dollars will he pay for the beer ? Draw | |||||||||
the payoff pattern for the option contract and for the hedged position. | |||||||||
(d) Given your answers to the above questions, which is the better way to | |||||||||
hedge the distributor's currency risk ? |
Option characterictics | ||||||||||||
Problem 57 | ||||||||||||
A firm is thinking of purchasing a put option on the DM. The option has | ||||||||||||
an exercise price of $0,5000 and a premium of $0,05. The current spot | ||||||||||||
rate is $0,5300. | ||||||||||||
(a) Draw the payoff diagram for the option, labelling all of its parts. | ||||||||||||
(b) Is the option in or out of the money ? By how much ? | ||||||||||||
(c) What is the intrinsic value of the option ? | ||||||||||||
(d) What is the time value of the option ? | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
-400 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |||||
280,347.44 zł | 112,138.97 zł | |||||||||||
-495,238.10 zł | -520 | -297,142.86 zł | ||||||||||
-185,003.88 zł |
Call or Put Option | |||||
Problem 58 | |||||
A person interested in speculating in the DM has gathered the following | |||||
information: | |||||
Today's spot exchange rate: So ($/DM) = 0,5019. | |||||
Estimate of the spot exchange rate in six months: S1/2 ($/DM) = 0,5045. | |||||
Option information | Call option | Put option | |||
Contract size | DM | 62.500 | 62.500 | ||
Exercise price | $/DM | 0.5050 | 0.5060 | ||
Premium | $/DM | 0.0010 | 0.0012 | ||
Should he buy a call option or a put option? What will the profits in dollars | |||||
be from this strategy if one DM option contract is purchased? |
Dzień | Cena akcji | stopa zwrotu z akcji | okres opcji | Cena rozl. 350 | Cena rozl. 380 | Dzień | DELTA (350) | DELTA (380) | RHO (350) | RHO (380) | RHO (350) | RHO (380) | D1(1) | D1(2) | D2(1) | D2(2) | Parametry | |||||||||||||||||||||
0 | 24.0 | 90 | #VALUE! | #VALUE! | 0 | 0.26 | 0.08 | 0.01 | 0.00 | 0.23 | 0.07 | -0.645227076735364 | -1.38630679827258 | -0.745227076735364 | -1.48630679827258 | Cena akcji | 24 | |||||||||||||||||||||
1 | 24.5 | 0.02 | 89 | #VALUE! | #VALUE! | 1 | 0.33 | 0.12 | 0.02 | 0.01 | 0.29 | 0.10 | -0.451440255281457 | -1.19667171642709 | -0.550883147882633 | -1.29611460902826 | r - wolna od ryzyka | 4.2% | ||||||||||||||||||||
2 | 25.0 | 0.019607843137255 | 88 | #VALUE! | #VALUE! | 2 | 0.40 | 0.16 | 0.02 | 0.01 | 0.36 | 0.13 | -0.259366879005835 | -1.00882064850787 | -0.358249525500443 | -1.10770329500248 | Odch. stand stopy zwrotu | 0.2 | ||||||||||||||||||||
3 | 25.4 | 0.019230769230769 | 87 | #VALUE! | #VALUE! | 3 | 0.47 | 0.21 | 0.03 | 0.01 | 0.43 | 0.18 | -0.068868871290857 | -0.822617539962649 | -0.167188079315875 | -0.920936747987667 | p = | 40% | ||||||||||||||||||||
4 | 25.9 | 0.018867924528302 | 86 | #VALUE! | #VALUE! | 4 | 0.55 | 0.26 | 0.03 | 0.01 | 0.51 | 0.23 | 0.120186727109954 | -0.637931535667152 | 0.022434205119186 | -0.73568405765792 | ||||||||||||||||||||||
5 | 26.4 | 0.018518518518519 | 85 | #VALUE! | #VALUE! | 5 | 0.62 | 0.32 | 0.04 | 0.02 | 0.58 | 0.29 | 0.307928281161307 | -0.454636461167318 | 0.210745749580552 | -0.551818992748073 | WIBOR2W | 4.61% | ||||||||||||||||||||
6 | 26.4 | 0 | 84 | #VALUE! | #VALUE! | 6 | 0.62 | 0.32 | 0.04 | 0.02 | 0.58 | 0.29 | 0.307970795169053 | -0.459119593670733 | 0.211361616861124 | -0.555728771978662 | + powyżej | 2% | ||||||||||||||||||||
weekend | 7 | 26.4 | 0 | 83 | #VALUE! | #VALUE! | 7 | 0.62 | 0.32 | 0.03 | 0.02 | 0.58 | 0.29 | 0.30802479603071 | -0.463672783715347 | 0.211992394091457 | -0.5597051856546 | WIBOR2W+5% | 6.61% | |||||||||||||||||||
8 | 26.9 | 0.018181818181818 | 82 | #VALUE! | #VALUE! | 8 | 0.69 | 0.39 | 0.04 | 0.02 | 0.66 | 0.35 | 0.496860749987526 | -0.279528043665588 | 0.401408609565683 | -0.37498018408743 | ||||||||||||||||||||||
9 | 27.4 | 0.017857142857143 | 81 | #VALUE! | #VALUE! | 9 | 0.75 | 0.46 | 0.04 | 0.02 | 0.72 | 0.42 | 0.684670583600906 | -0.096496032339411 | 0.589802253795854 | -0.191364362144462 | Cena wykonania 1 | 26 | ||||||||||||||||||||
10 | 27.8 | 0.017543859649123 | 80 | #VALUE! | #VALUE! | 10 | 0.81 | 0.53 | 0.04 | 0.03 | 0.78 | 0.50 | 0.871574723789283 | 0.085540979041075 | 0.777293819631077 | -0.008739925117132 | Cena wykonania 2 | 28 | ||||||||||||||||||||
11 | 28.3 | 0.017241379310345 | 79 | #VALUE! | #VALUE! | 11 | 0.85 | 0.61 | 0.05 | 0.03 | 0.83 | 0.57 | 1.0576908766162 | 0.266697879234598 | 0.964001081132496 | 0.173008083750896 | Termin opcji (w dniach) | 90 | ||||||||||||||||||||
12 | 28.8 | 0.016949152542373 | 78 | #VALUE! | #VALUE! | 12 | 0.89 | 0.67 | 0.05 | 0.04 | 0.87 | 0.64 | 1.24313441430769 | 0.447087097144989 | 1.15003948068257 | 0.353992163519862 | ||||||||||||||||||||||
13 | 28.8 | 0 | 77 | #VALUE! | #VALUE! | 13 | 0.89 | 0.67 | 0.05 | 0.04 | 0.88 | 0.64 | 1.24931633582362 | 0.448116555051371 | 1.15682008965354 | 0.355620308881294 | ||||||||||||||||||||||
weekend | 14 | 28.8 | 0 | 76 | #VALUE! | #VALUE! | 14 | 0.90 | 0.67 | 0.05 | 0.03 | 0.88 | 0.64 | 1.25563209663669 | 0.449178490516602 | 1.16373843828942 | 0.357284832169333 | |||||||||||||||||||||
15 | 29.3 | 0.016666666666667 | 75 | #VALUE! | #VALUE! | 15 | 0.93 | 0.74 | 0.05 | 0.04 | 0.91 | 0.71 | 1.44315565535626 | 0.631343494565093 | 1.35186856243873 | 0.540056401647566 | ||||||||||||||||||||||
16 | 29.8 | 0.016393442622951 | 74 | #VALUE! | #VALUE! | 16 | 0.95 | 0.79 | 0.05 | 0.04 | 0.94 | 0.76 | 1.63029682052417 | 0.813017849407117 | 1.53962035046594 | 0.722341379348881 | ||||||||||||||||||||||
17 | 30.2 | 0.016129032258065 | 73 | #VALUE! | #VALUE! | 17 | 0.97 | 0.84 | 0.05 | 0.04 | 0.96 | 0.82 | 1.81717027967154 | 0.994312547742776 | 1.72710857243083 | 0.904250840502067 | ||||||||||||||||||||||
18 | 30.7 | 0.015873015873016 | 72 | #VALUE! | #VALUE! | 18 | 0.98 | 0.88 | 0.05 | 0.04 | 0.97 | 0.86 | 2.00388999866627 | 1.17533768161435 | 1.91444727956628 | 1.08589496251436 | ||||||||||||||||||||||
19 | 31.2 | 0.015625 | 71 | #VALUE! | #VALUE! | 19 | 0.99 | 0.91 | 0.05 | 0.05 | 0.98 | 0.90 | 2.19056956543655 | 1.35620277482435 | 2.10175014814006 | 1.26738335752786 | ||||||||||||||||||||||
20 | 31.2 | 0 | 70 | #VALUE! | #VALUE! | 20 | 0.99 | 0.91 | 0.05 | 0.05 | 0.98 | 0.90 | 2.20420566844788 | 1.36390024922196 | 2.11601395807906 | 1.27570853885314 | ||||||||||||||||||||||
weekend | 21 | 31.2 | 0 | 69 | #VALUE! | #VALUE! | 21 | 0.99 | 0.91 | 0.05 | 0.04 | 0.98 | 0.90 | 2.21815126315353 | 1.37177857799465 | 2.13059175957644 | 1.28421907441756 | |||||||||||||||||||||
22 | 31.7 | 0.015384615384615 | 68 | #VALUE! | #VALUE! | 22 | 0.99 | 0.94 | 0.05 | 0.05 | 0.99 | 0.93 | 2.40806203892275 | 1.55548873837705 | 2.32113934018672 | 1.46856603964101 | ||||||||||||||||||||||
23 | 32.2 | 0.015151515151515 | 67 | #VALUE! | #VALUE! | 23 | 1.00 | 0.96 | 0.05 | 0.05 | 0.99 | 0.95 | 2.59825662555175 | 1.73934440277964 | 2.51197543151479 | 1.65306320874268 | ||||||||||||||||||||||
24 | 32.6 | 0.014925373134328 | 66 | #VALUE! | #VALUE! | 24 | 1.00 | 0.97 | 0.05 | 0.05 | 1.00 | 0.97 | 2.78885560006625 | 1.92346092893189 | 2.70322071620848 | 1.83782604507412 | ||||||||||||||||||||||
25 | 33.1 | 0.014705882352941 | 65 | #VALUE! | #VALUE! | 25 | 1.00 | 0.98 | 0.05 | 0.05 | 1.00 | 0.98 | 2.97998091251891 | 2.10795476761594 | 2.89499725395903 | 2.02297110905606 | ||||||||||||||||||||||
26 | 33.6 | 0.014492753623188 | 64 | #VALUE! | #VALUE! | 26 | 1.00 | 0.99 | 0.05 | 0.05 | 1.00 | 0.99 | 3.1717562719241 | 2.29294382899124 | 3.08742886765295 | 2.20861642472009 | ||||||||||||||||||||||
27 | 33.6 | 0 | 63 | #VALUE! | #VALUE! | 27 | 1.00 | 0.99 | 0.05 | 0.04 | 1.00 | 0.99 | 3.19476872888214 | 2.30900904390329 | 3.11110272622873 | 2.22534304124988 | ||||||||||||||||||||||
weekend | 28 | 33.6 | 0 | 62 | #VALUE! | #VALUE! | 28 | 1.00 | 0.99 | 0.04 | 0.04 | 1.00 | 0.99 | 3.2183522734559 | 2.32547793856134 | 3.13535294280265 | 2.24247860790808 | |||||||||||||||||||||
29 | 33.4 | -0.00661 | 61 | #VALUE! | #VALUE! | 29 | 1.00 | 0.99 | 0.04 | 0.04 | 1.00 | 0.99 | 3.16197449688146 | 2.26181127096683 | 3.07964723664661 | 2.17948401073197 | ||||||||||||||||||||||
30 | 33.2 | -0.006653982826483 | 60 | #VALUE! | #VALUE! | 30 | 1.00 | 0.99 | 0.04 | 0.04 | 1.00 | 0.98 | 3.10433674152813 | 2.19670315328312 | 3.02268708343536 | 2.11505349519034 | ||||||||||||||||||||||
31 | 32.9 | -0.006698554895721 | 59 | #VALUE! | #VALUE! | 31 | 1.00 | 0.98 | 0.04 | 0.04 | 1.00 | 0.98 | 3.04539343272711 | 2.1301003535125 | 2.96442704738384 | 2.04913396816923 | ||||||||||||||||||||||
32 | 32.7 | -0.006743728128794 | 58 | #VALUE! | #VALUE! | 32 | 1.00 | 0.98 | 0.04 | 0.04 | 1.00 | 0.98 | 2.98509656304579 | 2.06194674677177 | 2.90481926585384 | 1.98166944957982 | ||||||||||||||||||||||
33 | 32.5 | -0.006789514770533 | 57 | #VALUE! | #VALUE! | 33 | 1.00 | 0.98 | 0.04 | 0.04 | 1.00 | 0.97 | 2.92339551611267 | 1.99218310294791 | 2.84381327353725 | 1.91260086037249 | ||||||||||||||||||||||
34 | 32.5 | 0 | 56 | #VALUE! | #VALUE! | 34 | 1.00 | 0.98 | 0.04 | 0.04 | 1.00 | 0.97 | 2.94719563274213 | 2.00770561311682 | 2.86831456896746 | 1.92882454934216 | ||||||||||||||||||||||
weekend | 35 | 32.5 | 0 | 55 | #VALUE! | #VALUE! | 35 | 1.00 | 0.98 | 0.04 | 0.04 | 1.00 | 0.97 | 2.97166171333651 | 2.0236693482864 | 2.89348811733945 | 1.94549575228935 | |||||||||||||||||||||
36 | 32.3 | -0.00683592740059 | 54 | #VALUE! | #VALUE! | 36 | 1.00 | 0.97 | 0.04 | 0.04 | 1.00 | 0.97 | 2.90827016610432 | 1.95154035952909 | 2.83081049918017 | 1.87408069260494 | ||||||||||||||||||||||
37 | 32.0 | -0.006882978944957 | 53 | #VALUE! | #VALUE! | 37 | 1.00 | 0.97 | 0.04 | 0.04 | 1.00 | 0.96 | 2.84332796172542 | 1.87761457959436 | 2.76658886550394 | 1.80087548337288 | ||||||||||||||||||||||
38 | 31.8 | -0.006930682687973 | 52 | #VALUE! | #VALUE! | 38 | 1.00 | 0.96 | 0.04 | 0.04 | 1.00 | 0.96 | 2.7767722080356 | 1.80181733895555 | 2.70076051302899 | 1.72580564394894 | ||||||||||||||||||||||
39 | 31.6 | -0.006979052284821 | 51 | #VALUE! | #VALUE! | 39 | 1.00 | 0.96 | 0.04 | 0.03 | 1.00 | 0.95 | 2.70853619914608 | 1.72406934999817 | 2.63325893387517 | 1.64879208472726 | ||||||||||||||||||||||
40 | 31.4 | -0.007028101774569 | 50 | #VALUE! | #VALUE! | 40 | 1.00 | 0.95 | 0.04 | 0.03 | 0.99 | 0.94 | 2.63854909979076 | 1.64428631932845 | 2.56401350054076 | 1.56975072007846 | ||||||||||||||||||||||
41 | 31.4 | 0 | 49 | #VALUE! | #VALUE! | 41 | 1.00 | 0.95 | 0.04 | 0.03 | 1.00 | 0.94 | 2.66300001330406 | 1.65864293566651 | 2.5892135345668 | 1.58485645692925 | ||||||||||||||||||||||
weekend | 42 | 31.4 | 48 | #VALUE! | #VALUE! | 42 | 1.00 | 0.95 | 0.03 | 0.03 | 1.00 | 0.95 | 2.68823531262942 | 1.67347011164046 | 2.6152056382954 | 1.60044043730644 | ||||||||||||||||||||||
INPUTS | ||||||||||||||||||||||||||||||||||||||
cena akcji | 200 | |||||||||||||||||||||||||||||||||||||
r - wolna od ryzyka | 7% | |||||||||||||||||||||||||||||||||||||
odch. standardowe stopy zwrotu akcji | 0.2 | |||||||||||||||||||||||||||||||||||||
Dzień | Cena akcji | stopa zwrotu z akcji | okres opcji | Cena rozl. 350 | Cena rozl. 380 | Dzień | p = | 30% | ||||||||||||||||||||||||||||||
0 | -14.4 | 90 | #VALUE! | #VALUE! | 0 | |||||||||||||||||||||||||||||||||
1 | -13.9 | -0.033265105766922 | 89 | #VALUE! | #VALUE! | 1 | WIBOR2W | 5.54% | ||||||||||||||||||||||||||||||
2 | -13.5 | -0.034409749731142 | 88 | #VALUE! | #VALUE! | 2 | dadatkowo | 5% | ||||||||||||||||||||||||||||||
3 | -13.0 | -0.035635974702065 | 87 | #VALUE! | #VALUE! | 3 | WIBOR2W+5% | 10.54% | ||||||||||||||||||||||||||||||
4 | -12.5 | -0.036952824625593 | 86 | #VALUE! | #VALUE! | 4 | ||||||||||||||||||||||||||||||||
5 | -12.0 | -0.038370731538905 | 85 | #VALUE! | #VALUE! | 5 | strike price A | 230 | ||||||||||||||||||||||||||||||
6 | -12.0 | 0 | 84 | #VALUE! | #VALUE! | 6 | strike price B | 250 | ||||||||||||||||||||||||||||||
weekend | 7 | -12.0 | 0 | 83 | #VALUE! | #VALUE! | 7 | maturity (w dniach) | 90 | |||||||||||||||||||||||||||||
8 | -11.5 | -0.039901792507117 | 82 | #VALUE! | #VALUE! | 8 | ||||||||||||||||||||||||||||||||
9 | -11.1 | -0.04156011561704 | 81 | #VALUE! | #VALUE! | 9 | ||||||||||||||||||||||||||||||||
10 | -10.6 | -0.043362255989374 | 80 | #VALUE! | #VALUE! | 10 | ||||||||||||||||||||||||||||||||
11 | -10.1 | -0.045327770371657 | 79 | #VALUE! | #VALUE! | 11 | dywidenda | 10% | ||||||||||||||||||||||||||||||
12 | -9.6 | -0.047479929723423 | 78 | #VALUE! | #VALUE! | 12 | ustalenie prawa w t=15 | 16 | ||||||||||||||||||||||||||||||
13 | -9.6 | 0 | 77 | #VALUE! | #VALUE! | 13 | wypłata w t=16 | |||||||||||||||||||||||||||||||
weekend | 14 | -9.6 | 0 | 76 | #VALUE! | #VALUE! | 14 | |||||||||||||||||||||||||||||||
15 | -9.1 | -0.049846644921232 | 75 | #VALUE! | #VALUE! | 15 | ||||||||||||||||||||||||||||||||
16 | -8.7 | -0.052461683847971 | 74 | #VALUE! | #VALUE! | 16 | wys dyw | -0.866953476123626 | ||||||||||||||||||||||||||||||
17 | 15.4 | -2.77754235529084 | 73 | #VALUE! | #VALUE! | 17 | ||||||||||||||||||||||||||||||||
18 | 15.9 | 0.031147664432129 | 72 | #VALUE! | #VALUE! | 18 | payment | 16.8 | ||||||||||||||||||||||||||||||
19 | 16.4 | 0.03020679336871 | 71 | #VALUE! | #VALUE! | 19 | ||||||||||||||||||||||||||||||||
20 | 16.4 | 0 | 70 | #VALUE! | #VALUE! | 20 | ||||||||||||||||||||||||||||||||
weekend | 21 | 16.4 | 0 | 69 | #VALUE! | #VALUE! | 21 | -14.4295347612363 | 214.429534761236 | |||||||||||||||||||||||||||||
22 | 16.9 | 0.029321097048812 | 68 | #VALUE! | #VALUE! | 22 | ||||||||||||||||||||||||||||||||
23 | 17.3 | 0.028485860372317 | 67 | #VALUE! | #VALUE! | 23 | ||||||||||||||||||||||||||||||||
24 | 17.8 | 0.027696890613552 | 66 | #VALUE! | #VALUE! | 24 | Sd=200-wartość dyw/(1+rf)^dzień dyw/360 | |||||||||||||||||||||||||||||||
25 | 18.3 | 0.026950447030171 | 65 | #VALUE! | #VALUE! | 25 | ||||||||||||||||||||||||||||||||
26 | 18.8 | 0.026243181555749 | 64 | #VALUE! | #VALUE! | 26 | ||||||||||||||||||||||||||||||||
27 | 18.8 | 0 | 63 | #VALUE! | #VALUE! | 27 | ||||||||||||||||||||||||||||||||
weekend | 28 | 18.8 | 0 | 62 | #VALUE! | #VALUE! | 28 | |||||||||||||||||||||||||||||||
29 | 18.5 | -0.01183220539155 | 61 | #VALUE! | #VALUE! | 29 | ||||||||||||||||||||||||||||||||
30 | 18.3 | -0.011973882832559 | 60 | #VALUE! | #VALUE! | 30 | ||||||||||||||||||||||||||||||||
31 | 18.1 | -0.012118994249754 | 59 | #VALUE! | #VALUE! | 31 | ||||||||||||||||||||||||||||||||
32 | 17.9 | -0.012267666023754 | 58 | #VALUE! | #VALUE! | 32 | ||||||||||||||||||||||||||||||||
33 | 17.7 | -0.012420030813782 | 57 | #VALUE! | #VALUE! | 33 | ||||||||||||||||||||||||||||||||
34 | 17.7 | 0 | 56 | #VALUE! | #VALUE! | 34 | ||||||||||||||||||||||||||||||||
weekend | 35 | 17.7 | 0 | 55 | #VALUE! | #VALUE! | 35 | |||||||||||||||||||||||||||||||
36 | 17.4 | -0.012576227952473 | 54 | #VALUE! | #VALUE! | 36 | ||||||||||||||||||||||||||||||||
37 | 17.2 | -0.012736403870848 | 53 | #VALUE! | #VALUE! | 37 | ||||||||||||||||||||||||||||||||
38 | 17.0 | -0.012900712556185 | 52 | #VALUE! | #VALUE! | 38 | ||||||||||||||||||||||||||||||||
39 | 16.8 | -0.013069316045798 | 51 | #VALUE! | #VALUE! | 39 | ||||||||||||||||||||||||||||||||
40 | 16.5 | -0.013242384960041 | 50 | #VALUE! | #VALUE! | 40 | ||||||||||||||||||||||||||||||||
41 | 16.5 | 0 | 49 | #VALUE! | #VALUE! | 41 | ||||||||||||||||||||||||||||||||
weekend | 42 | 17.5 | 48 | #VALUE! | #VALUE! | 42 |
Black-Scholes Model. Put-Call Parity | |||||||||
Problem 59 | |||||||||
Consider a call option on the stock of Arkla Natural Gas. The stock currently | |||||||||
trades for $22,75 per share. The option has one month to expiration and an | |||||||||
exercise price of $20,00. The riskless interest rate is 5% (annually) and the variance | |||||||||
is 0,45. | |||||||||
(a) What is the value of the call option? | |||||||||
(b) The price exceeds $2,75. Why? | |||||||||
(c) Suppose the risk-free rate was 7% instead of 5%. Find the option's value | |||||||||
Is this result consistent with your expectation ? | |||||||||
#VALUE! | |||||||||
-90 | 110 | ||||||||
10.00 zł | |||||||||
2.9999999985 | |||||||||
42 | |||||||||
84 | |||||||||
26.6666666666667 |
Swap terminology | |||||||
Problem 60 | |||||||
Gettman Inc., a manufacturer of sports footwear, recently negotiated | |||||||
a ten-year, $5 million bank loan with Texas Commerce Bank (TCB). The loan | |||||||
requires semiannual payments based on a floating-rate index of six-month | |||||||
LIBOR + 1%. Furthermore, the loan contains a covenant stipulating that | |||||||
Gettman should hedge within the next 60 days, to the degree possible, | |||||||
the interest rate risk in the loan. The CFO of Gettman decides to achive this | |||||||
objective by entering into an interest swap, where the firm will receive floating | |||||||
and pay fixed. The swap dealer quotes ten year swaps at "80-87". The current | |||||||
ten-year Treasury bond yield is 7%. | |||||||
(a) What is the percentage coupon (as a function of LIBOR, on a 365-day | |||||||
basis) received by TCB on this loan? | |||||||
(b) What is the fixed rate paid by Gettman Inc. to the dealer? | |||||||
(c) What is the floating rate paid by the dealer to the firm? | |||||||
(d) What is the net interest cost for Gettman on its borrowed funds? | |||||||
(e) Can you offer a plausible reason why TCB may want the firm to hedge the | |||||||
interest rate risk when presumably the bank itself could have provided a | |||||||
fixed-rate loan to the firm? |
Swap. Economic value | ||||||||||||
Problem 61 | ||||||||||||
Consider a five-year, semiannual settlement, $100 million notional principal | ||||||||||||
8%-versus-LIBOR interest rate swap between Firm X (the fixed payer) and | ||||||||||||
Firm Y (the fixed receiver). Also suppose that just after the sixth payment (i.e., | ||||||||||||
after three years), Firm X falls into financial troubles and files for Chapter 7. | ||||||||||||
(a) What is the loss per period to Firm Y if the market today offers swaps for a | ||||||||||||
fixed rate 7,2% against LIBOR flat? | ||||||||||||
(b) What is the economic value of the swap? | ||||||||||||
(c) If instead the market today offers swaps for a fixed rate of 8,4% against the | ||||||||||||
LIBOR, what is the loss to Firm Y? What is the economic value of the swap | ||||||||||||
in this case? | ||||||||||||
722,570.16 zł | ||||||||||||
-200000 | #VALUE! | ex 72 | ||||||||||
8000000 | 7200000 | |||||||||||
4400000 | because we are calculating it per period |