moje zadanie nr 2 nowak


Overview

55
56
57
58
Arkusz1
59
60
61


Sheet 1: 55

Futures. Marking-to-market





Problem 55





Tri-Mark receives a $1200,000 from a major contract on December 18. These funds





are not needed for six days and, rather than putting them into short-term marketable





securities Tri-Mark's Chief Financial Officer (CFO) wants to use these funds to





speculate in pork bellies. He purchases 55 contracts. Traded on the





Chicago Mercantile Exchange (CME), each pork belly futures contract is for





40,000 pounds and requires a $2,150 initial margin and $1,800 maintenance margin.





The current futures price for February delivery is $0,5380. The contracts are





purchased at this price.





(a) What is the initial value of Tri-Mark's margin account ?





(b) Immediately after the CFO purchases the contracts, the government issues





a major report on dietary fat that is expected to reduce the public's bacon





consumption. On succeeding days after the purchase of the contracts, pork





belly futures trade at $0,5312, $0,5300, $0,5120, $0,4998, $0,4887, and $0,4880.





Compute the changes in the margin account on each of these days.





Assuming that Tri-Mark closes its position at the end of sixth day, what





is its profit/loss on its speculation ?






Sheet 2: 56

Futures & Options








Problem 56








A distributor has just purchased DM 375 000 worth of fine German beer for








the central Ohio market and must pay for the beer in 90 days. The distributor








is concerned about changes in the value of the German mark during that








period. It has accumulated the following information:








Today's spot exchange rate: So ($/DM) = 0,5019








Exchange rate available on three-month futures contract: F1,4 ($/DM) = 0,5028








Distributor's estimate of the spot exchange rate in three months: S1,4 ($/DM) = 0,5050



















Option information

Call option Put option




Contract size
DM 62,500.000 62,500.000




Exercise price
$/DM 0.5050 0.5060




Premium
$/DM 0.0010 0.0012













(a) If the distributor remains unhedged, how much will he expect to pay








in dollars for the beer ? Draw the payoff pattern.








(b) If currency futures contracts are used to hedge (each contract is for DM








125 000), how much will the distributor pay in dollars for the beer ? Draw






$ 189375
the payoff pattern for the futures contract and for the hedged position.








(c) If the distributor hedges this exposure with an option, which type of option







188550
should he use ? Assuming that the distributor's estimate of the future spot








rate is accurate, should the distributor exercise this option ? If the distributor








exercises the option, how many dollars will he pay for the beer ? Draw








the payoff pattern for the option contract and for the hedged position.








(d) Given your answers to the above questions, which is the better way to








hedge the distributor's currency risk ?









Sheet 3: 57

Option characterictics











Problem 57











A firm is thinking of purchasing a put option on the DM. The option has











an exercise price of $0,5000 and a premium of $0,05. The current spot











rate is $0,5300.











(a) Draw the payoff diagram for the option, labelling all of its parts.











(b) Is the option in or out of the money ? By how much ?











(c) What is the intrinsic value of the option ?











(d) What is the time value of the option ?






























































































































































0 1 2 3 4 5 6 7 8





-400 120 120 120 120 120 120 120




































































280,347.44 zł

112,138.97 zł


































-495,238.10 zł
-520 -297,142.86 zł












































































-185,003.88 zł






Sheet 4: 58

Call or Put Option




Problem 58




A person interested in speculating in the DM has gathered the following




information:




Today's spot exchange rate: So ($/DM) = 0,5019.




Estimate of the spot exchange rate in six months: S1/2 ($/DM) = 0,5045.











Option information
Call option Put option

Contract size DM 62.500 62.500

Exercise price $/DM 0.5050 0.5060

Premium $/DM 0.0010 0.0012






Should he buy a call option or a put option? What will the profits in dollars




be from this strategy if one DM option contract is purchased?





Sheet 5: Arkusz1


Dzień Cena akcji stopa zwrotu z akcji okres opcji Cena rozl. 350 Cena rozl. 380 Dzień DELTA (350) DELTA (380) RHO (350) RHO (380) RHO (350) RHO (380)

D1(1) D1(2) D2(1) D2(2)



Parametry














0 24.0
90 #VALUE! #VALUE! 0 0.26 0.08 0.01 0.00 0.23 0.07

-0.645227076735364 -1.38630679827258 -0.745227076735364 -1.48630679827258



Cena akcji 24













1 24.5 0.02 89 #VALUE! #VALUE! 1 0.33 0.12 0.02 0.01 0.29 0.10

-0.451440255281457 -1.19667171642709 -0.550883147882633 -1.29611460902826



r - wolna od ryzyka 4.2%













2 25.0 0.019607843137255 88 #VALUE! #VALUE! 2 0.40 0.16 0.02 0.01 0.36 0.13

-0.259366879005835 -1.00882064850787 -0.358249525500443 -1.10770329500248



Odch. stand stopy zwrotu 0.2













3 25.4 0.019230769230769 87 #VALUE! #VALUE! 3 0.47 0.21 0.03 0.01 0.43 0.18

-0.068868871290857 -0.822617539962649 -0.167188079315875 -0.920936747987667



p = 40%













4 25.9 0.018867924528302 86 #VALUE! #VALUE! 4 0.55 0.26 0.03 0.01 0.51 0.23

0.120186727109954 -0.637931535667152 0.022434205119186 -0.73568405765792



















5 26.4 0.018518518518519 85 #VALUE! #VALUE! 5 0.62 0.32 0.04 0.02 0.58 0.29

0.307928281161307 -0.454636461167318 0.210745749580552 -0.551818992748073



WIBOR2W 4.61%













6 26.4 0 84 #VALUE! #VALUE! 6 0.62 0.32 0.04 0.02 0.58 0.29

0.307970795169053 -0.459119593670733 0.211361616861124 -0.555728771978662



+ powyżej 2%












weekend 7 26.4 0 83 #VALUE! #VALUE! 7 0.62 0.32 0.03 0.02 0.58 0.29

0.30802479603071 -0.463672783715347 0.211992394091457 -0.5597051856546



WIBOR2W+5% 6.61%













8 26.9 0.018181818181818 82 #VALUE! #VALUE! 8 0.69 0.39 0.04 0.02 0.66 0.35

0.496860749987526 -0.279528043665588 0.401408609565683 -0.37498018408743



















9 27.4 0.017857142857143 81 #VALUE! #VALUE! 9 0.75 0.46 0.04 0.02 0.72 0.42

0.684670583600906 -0.096496032339411 0.589802253795854 -0.191364362144462



Cena wykonania 1 26













10 27.8 0.017543859649123 80 #VALUE! #VALUE! 10 0.81 0.53 0.04 0.03 0.78 0.50

0.871574723789283 0.085540979041075 0.777293819631077 -0.008739925117132



Cena wykonania 2 28













11 28.3 0.017241379310345 79 #VALUE! #VALUE! 11 0.85 0.61 0.05 0.03 0.83 0.57

1.0576908766162 0.266697879234598 0.964001081132496 0.173008083750896



Termin opcji (w dniach) 90













12 28.8 0.016949152542373 78 #VALUE! #VALUE! 12 0.89 0.67 0.05 0.04 0.87 0.64

1.24313441430769 0.447087097144989 1.15003948068257 0.353992163519862



















13 28.8 0 77 #VALUE! #VALUE! 13 0.89 0.67 0.05 0.04 0.88 0.64

1.24931633582362 0.448116555051371 1.15682008965354 0.355620308881294


















weekend 14 28.8 0 76 #VALUE! #VALUE! 14 0.90 0.67 0.05 0.03 0.88 0.64

1.25563209663669 0.449178490516602 1.16373843828942 0.357284832169333



















15 29.3 0.016666666666667 75 #VALUE! #VALUE! 15 0.93 0.74 0.05 0.04 0.91 0.71

1.44315565535626 0.631343494565093 1.35186856243873 0.540056401647566



















16 29.8 0.016393442622951 74 #VALUE! #VALUE! 16 0.95 0.79 0.05 0.04 0.94 0.76

1.63029682052417 0.813017849407117 1.53962035046594 0.722341379348881



















17 30.2 0.016129032258065 73 #VALUE! #VALUE! 17 0.97 0.84 0.05 0.04 0.96 0.82

1.81717027967154 0.994312547742776 1.72710857243083 0.904250840502067



















18 30.7 0.015873015873016 72 #VALUE! #VALUE! 18 0.98 0.88 0.05 0.04 0.97 0.86

2.00388999866627 1.17533768161435 1.91444727956628 1.08589496251436



















19 31.2 0.015625 71 #VALUE! #VALUE! 19 0.99 0.91 0.05 0.05 0.98 0.90

2.19056956543655 1.35620277482435 2.10175014814006 1.26738335752786



















20 31.2 0 70 #VALUE! #VALUE! 20 0.99 0.91 0.05 0.05 0.98 0.90

2.20420566844788 1.36390024922196 2.11601395807906 1.27570853885314


















weekend 21 31.2 0 69 #VALUE! #VALUE! 21 0.99 0.91 0.05 0.04 0.98 0.90

2.21815126315353 1.37177857799465 2.13059175957644 1.28421907441756



















22 31.7 0.015384615384615 68 #VALUE! #VALUE! 22 0.99 0.94 0.05 0.05 0.99 0.93

2.40806203892275 1.55548873837705 2.32113934018672 1.46856603964101




23 32.2 0.015151515151515 67 #VALUE! #VALUE! 23 1.00 0.96 0.05 0.05 0.99 0.95

2.59825662555175 1.73934440277964 2.51197543151479 1.65306320874268



24 32.6 0.014925373134328 66 #VALUE! #VALUE! 24 1.00 0.97 0.05 0.05 1.00 0.97

2.78885560006625 1.92346092893189 2.70322071620848 1.83782604507412



25 33.1 0.014705882352941 65 #VALUE! #VALUE! 25 1.00 0.98 0.05 0.05 1.00 0.98

2.97998091251891 2.10795476761594 2.89499725395903 2.02297110905606



26 33.6 0.014492753623188 64 #VALUE! #VALUE! 26 1.00 0.99 0.05 0.05 1.00 0.99

3.1717562719241 2.29294382899124 3.08742886765295 2.20861642472009



27 33.6 0 63 #VALUE! #VALUE! 27 1.00 0.99 0.05 0.04 1.00 0.99

3.19476872888214 2.30900904390329 3.11110272622873 2.22534304124988


weekend 28 33.6 0 62 #VALUE! #VALUE! 28 1.00 0.99 0.04 0.04 1.00 0.99

3.2183522734559 2.32547793856134 3.13535294280265 2.24247860790808



29 33.4 -0.00661 61 #VALUE! #VALUE! 29 1.00 0.99 0.04 0.04 1.00 0.99

3.16197449688146 2.26181127096683 3.07964723664661 2.17948401073197



30 33.2 -0.006653982826483 60 #VALUE! #VALUE! 30 1.00 0.99 0.04 0.04 1.00 0.98

3.10433674152813 2.19670315328312 3.02268708343536 2.11505349519034



31 32.9 -0.006698554895721 59 #VALUE! #VALUE! 31 1.00 0.98 0.04 0.04 1.00 0.98

3.04539343272711 2.1301003535125 2.96442704738384 2.04913396816923



32 32.7 -0.006743728128794 58 #VALUE! #VALUE! 32 1.00 0.98 0.04 0.04 1.00 0.98

2.98509656304579 2.06194674677177 2.90481926585384 1.98166944957982



33 32.5 -0.006789514770533 57 #VALUE! #VALUE! 33 1.00 0.98 0.04 0.04 1.00 0.97

2.92339551611267 1.99218310294791 2.84381327353725 1.91260086037249



34 32.5 0 56 #VALUE! #VALUE! 34 1.00 0.98 0.04 0.04 1.00 0.97

2.94719563274213 2.00770561311682 2.86831456896746 1.92882454934216


weekend 35 32.5 0 55 #VALUE! #VALUE! 35 1.00 0.98 0.04 0.04 1.00 0.97

2.97166171333651 2.0236693482864 2.89348811733945 1.94549575228935



36 32.3 -0.00683592740059 54 #VALUE! #VALUE! 36 1.00 0.97 0.04 0.04 1.00 0.97

2.90827016610432 1.95154035952909 2.83081049918017 1.87408069260494



37 32.0 -0.006882978944957 53 #VALUE! #VALUE! 37 1.00 0.97 0.04 0.04 1.00 0.96

2.84332796172542 1.87761457959436 2.76658886550394 1.80087548337288



38 31.8 -0.006930682687973 52 #VALUE! #VALUE! 38 1.00 0.96 0.04 0.04 1.00 0.96

2.7767722080356 1.80181733895555 2.70076051302899 1.72580564394894



39 31.6 -0.006979052284821 51 #VALUE! #VALUE! 39 1.00 0.96 0.04 0.03 1.00 0.95

2.70853619914608 1.72406934999817 2.63325893387517 1.64879208472726



40 31.4 -0.007028101774569 50 #VALUE! #VALUE! 40 1.00 0.95 0.04 0.03 0.99 0.94

2.63854909979076 1.64428631932845 2.56401350054076 1.56975072007846



41 31.4 0 49 #VALUE! #VALUE! 41 1.00 0.95 0.04 0.03 1.00 0.94

2.66300001330406 1.65864293566651 2.5892135345668 1.58485645692925


weekend 42 31.4
48 #VALUE! #VALUE! 42 1.00 0.95 0.03 0.03 1.00 0.95

2.68823531262942 1.67347011164046 2.6152056382954 1.60044043730644


















INPUTS





















cena akcji 200




















r - wolna od ryzyka 7%
















odch. standardowe stopy zwrotu akcji



0.2





Dzień Cena akcji stopa zwrotu z akcji okres opcji Cena rozl. 350 Cena rozl. 380 Dzień







p = 30%





0 -14.4
90 #VALUE! #VALUE! 0















1 -13.9 -0.033265105766922 89 #VALUE! #VALUE! 1







WIBOR2W 5.54%





2 -13.5 -0.034409749731142 88 #VALUE! #VALUE! 2







dadatkowo 5%





















3 -13.0 -0.035635974702065 87 #VALUE! #VALUE! 3







WIBOR2W+5% 10.54%





















4 -12.5 -0.036952824625593 86 #VALUE! #VALUE! 4































5 -12.0 -0.038370731538905 85 #VALUE! #VALUE! 5







strike price A 230





















6 -12.0 0 84 #VALUE! #VALUE! 6







strike price B 250




















weekend 7 -12.0 0 83 #VALUE! #VALUE! 7







maturity (w dniach) 90





















8 -11.5 -0.039901792507117 82 #VALUE! #VALUE! 8































9 -11.1 -0.04156011561704 81 #VALUE! #VALUE! 9































10 -10.6 -0.043362255989374 80 #VALUE! #VALUE! 10































11 -10.1 -0.045327770371657 79 #VALUE! #VALUE! 11







dywidenda 10%





















12 -9.6 -0.047479929723423 78 #VALUE! #VALUE! 12







ustalenie prawa w t=15 16





















13 -9.6 0 77 #VALUE! #VALUE! 13







wypłata w t=16





















weekend 14 -9.6 0 76 #VALUE! #VALUE! 14































15 -9.1 -0.049846644921232 75 #VALUE! #VALUE! 15































16 -8.7 -0.052461683847971 74 #VALUE! #VALUE! 16 wys dyw


-0.866953476123626


























17 15.4 -2.77754235529084 73 #VALUE! #VALUE! 17































18 15.9 0.031147664432129 72 #VALUE! #VALUE! 18 payment


16.8


























19 16.4 0.03020679336871 71 #VALUE! #VALUE! 19































20 16.4 0 70 #VALUE! #VALUE! 20






























weekend 21 16.4 0 69 #VALUE! #VALUE! 21







-14.4295347612363




214.429534761236
















22 16.9 0.029321097048812 68 #VALUE! #VALUE! 22































23 17.3 0.028485860372317 67 #VALUE! #VALUE! 23































24 17.8 0.027696890613552 66 #VALUE! #VALUE! 24





Sd=200-wartość dyw/(1+rf)^dzień dyw/360
























25 18.3 0.026950447030171 65 #VALUE! #VALUE! 25































26 18.8 0.026243181555749 64 #VALUE! #VALUE! 26































27 18.8 0 63 #VALUE! #VALUE! 27






























weekend 28 18.8 0 62 #VALUE! #VALUE! 28































29 18.5 -0.01183220539155 61 #VALUE! #VALUE! 29































30 18.3 -0.011973882832559 60 #VALUE! #VALUE! 30































31 18.1 -0.012118994249754 59 #VALUE! #VALUE! 31































32 17.9 -0.012267666023754 58 #VALUE! #VALUE! 32































33 17.7 -0.012420030813782 57 #VALUE! #VALUE! 33































34 17.7 0 56 #VALUE! #VALUE! 34






























weekend 35 17.7 0 55 #VALUE! #VALUE! 35































36 17.4 -0.012576227952473 54 #VALUE! #VALUE! 36































37 17.2 -0.012736403870848 53 #VALUE! #VALUE! 37































38 17.0 -0.012900712556185 52 #VALUE! #VALUE! 38































39 16.8 -0.013069316045798 51 #VALUE! #VALUE! 39































40 16.5 -0.013242384960041 50 #VALUE! #VALUE! 40































41 16.5 0 49 #VALUE! #VALUE! 41






























weekend 42 17.5
48 #VALUE! #VALUE! 42































Sheet 6: 59

Black-Scholes Model. Put-Call Parity








Problem 59








Consider a call option on the stock of Arkla Natural Gas. The stock currently








trades for $22,75 per share. The option has one month to expiration and an








exercise price of $20,00. The riskless interest rate is 5% (annually) and the variance








is 0,45.








(a) What is the value of the call option?








(b) The price exceeds $2,75. Why?








(c) Suppose the risk-free rate was 7% instead of 5%. Find the option's value








Is this result consistent with your expectation ?













































#VALUE!






































-90 110



































10.00 zł



























2.9999999985































42








84






























26.6666666666667

Sheet 7: 60

Swap terminology






Problem 60






Gettman Inc., a manufacturer of sports footwear, recently negotiated






a ten-year, $5 million bank loan with Texas Commerce Bank (TCB). The loan






requires semiannual payments based on a floating-rate index of six-month






LIBOR + 1%. Furthermore, the loan contains a covenant stipulating that






Gettman should hedge within the next 60 days, to the degree possible,






the interest rate risk in the loan. The CFO of Gettman decides to achive this






objective by entering into an interest swap, where the firm will receive floating






and pay fixed. The swap dealer quotes ten year swaps at "80-87". The current






ten-year Treasury bond yield is 7%.






(a) What is the percentage coupon (as a function of LIBOR, on a 365-day






basis) received by TCB on this loan?






(b) What is the fixed rate paid by Gettman Inc. to the dealer?






(c) What is the floating rate paid by the dealer to the firm?






(d) What is the net interest cost for Gettman on its borrowed funds?






(e) Can you offer a plausible reason why TCB may want the firm to hedge the






interest rate risk when presumably the bank itself could have provided a






fixed-rate loan to the firm?







Sheet 8: 61

Swap. Economic value











Problem 61











Consider a five-year, semiannual settlement, $100 million notional principal











8%-versus-LIBOR interest rate swap between Firm X (the fixed payer) and











Firm Y (the fixed receiver). Also suppose that just after the sixth payment (i.e.,











after three years), Firm X falls into financial troubles and files for Chapter 7.
























(a) What is the loss per period to Firm Y if the market today offers swaps for a











fixed rate 7,2% against LIBOR flat?











(b) What is the economic value of the swap?











(c) If instead the market today offers swaps for a fixed rate of 8,4% against the











LIBOR, what is the loss to Firm Y? What is the economic value of the swap











in this case?













































722,570.16 zł












































-200000







#VALUE! ex 72





































































8000000
7200000
























4400000 because we are calculating it per period





Wyszukiwarka

Podobne podstrony:
moje zadanie nr 2 nowak 2 czesc
Egzamin praktyczny Zadanie Nr 4
Zadanie nr 1 z treścią
Zadanie nr 3 screeny gotowe
zadanie nr 1 na zajęcia
Opis sposobów usunięcia usterki systemu zadanie nr 3
DANE DO ZADANIA NR 1
zadanie nr 7
zadanie nr 1
zadanie nr 2
zadanie nr 4
Moje zadania z WDINZFIN
Zadanie nr 7
Zadanie nr I (wielokrotnego wyboru) + transkrypt + klucz, ROZUMIENIE ZE SLUCHU - przykladowe zadania
zadanie nr 17 tresc
zadanie nr 34 tresc
zadanie nr 83 tresc
zadanie nr 48 tresc
zadanie nr 69 tresc

więcej podobnych podstron