background image

A Novel Multilevel Inverter Topology Based on 

Multi-Winding Multi-Tapped Transformers for 

Improved Wave Shape Requirements 

 

E.S Deepak, C.S Anil, S Sanjay, C Febi and K.R Sajina, 

Amrita VishwaVidyapeetham University 

 

 

Abstract-  The present work proposes a simple cost effective 

multilevel topology for generating high quality sinusoidal AC 
waveform based onmulti-tapped multi-winding transformer 
switching technique. Multi-winding multi-tapped transformers 
are used to aid the multi-level switching process which guarantees 
a large number of intermediate switching levels. Each secondary 
tapping can act as a separate DC source derived from the single 
DC supply input to feed the second transformer. The proposed 
topology can generate 27 switching states by using only 8 switches 
and 3 full bridge diode rectifiers. The basic working principle is 
based on the selective addition and subtraction of magnetic flux in 
the transformer core. Although the mathematical modeling of 
multi-winding multi-tapped transformer is slightly complex, the 
resulting circuit complexity reduces when compared to the 
conventional topologies like diode clamped, capacitor clamped 
and cascaded multilevel inverters. The present work uses PSPICE 
and MATLABmodeling techniques to simulate the entire system 
using synthesized multi-winding multi-tapped transformer 
models. Also the proposed system has superior quality 
performance characteristics when compared to the conventional 
topologies, due to its ability to avoid major drawbacks like 
capacitor voltage unbalancing, common mode voltage stresses at 
the load end and the requirement of large filters to avoid the 
presence of harmonic frequencies at the output.

 

Index Terms- Multi-winding multi tapped transformer, 

multilevel inverter, Common mode voltage, PSICE modeling 

I.

  I

NTRODUCTION

 

Multilevel inverter technology has become extremely 

popular in recent years due to its increasing number of high 
power applications such as large motor drives, flexible ac 
transmission systems, power quality improvement devices and 
renewable energy converters.  

 
 
 

 

E.S. Deepak is with the Department of Electrical and Electronics 

Engineering, Amrita University, Kollam, India (e-mail : 

deepakes@gmail.com). 

C.S. Anil (anil89cs@yahoo.com), S. Sanjay (sanjay.santhosh@gmail.com), 

C. Febi (febichellampillai@gmail.com) and K.R. Sajina 

(kr.sajina@gmail.com) are Electrical Engineering students (2007 to 2011 

batch) at Amrita University, Kollam, India 

 

978-1-4244-7882-8/11/$26.00

 

©2011

 

IEEE 

 Unlike normal voltage source inverters, multilevel inverters 

provide several intermediate voltage levels which guarantee an   
improved output voltage waveform as well as a less distorted 
input current wave shape [2].The other features include large 
power conversion capability, better harmonic spectrum, and 
low dv/dt stress on switches, reduced EMI, lower switching 
losses and smaller common mode voltage.  They can also 
operate at both fundamental switching frequency and higher 
switching frequencies according to the applications [1]. 

The basic multilevel inverter topologies are diode clamped, 

cascaded and capacitor clamped. Although the three topologies 
provide multilevel operation, their disadvantages limit their 
applications. Voltage unbalancing and unequal current stresses 
are the major difficulties of diode clamped multilevel inverter. 
Also, the number of clamping diodes required is quadratically 
related to the number of levels which can be cumbersome for 
units with high number of levels. In capacitor clamped, the 
control is complicated to uphold the voltage levels for each of 
the capacitors. The pre-charging of capacitors to the 
corresponding voltages and the startup are also complex.For 
lower switching frequency the clamping capacitoris larger in 
size, decreasing the power density of the multilevel inverter 
[1]. Switching utilization and efficiency are also poor for real 
power transmission. The use of large number of capacitors is 
more expensive and bulkier than clamping diodes. The main 
disadvantage of cascaded cell multilevel inverter is the need of 
separate DC sources for each of the H-bridges. 

The number of isolated DC-links is more for a multilevel 

inverter when compared to a two level inverter. The problems 
caused by the neutral point voltage variations also make the 
multilevel topology more complex.  The power bus structure 
and hence the control schemes become complicated as the 
number of levels increases. 

The present work focuses on a new multilevel inverter 

topology utilizing the multi-winding multi-tapped transformer 
structure to make a large number of output voltage levels with 
minimum number of switches. The initial phase of the work 
includes the study of conventional topologies through PSPICE 
and MATLAB basedsimulations [6] and the second phase 
proposes a new multilevel inverter topology. The proposed 
topology can efficiently eliminate the main drawbacks of 
conventional topologies and it can provide improved output 
voltage wave shape. 

background image

II.

 

C

OMMON

 

M

ULTILEVEL

 

T

OPOLOGIES 

In cascaded multilevel inverter topology [3], each separate 

DC source is connectedtodifferent H-bridge stages. Each H-
Bridge can generate three different voltage levels +V

DC

,0,-V

DC. 

The number of output voltage levels in a cascaded inverter is 
given by m=2s+1, where‘s’ is the number of separate dc 
sources. Figure 1 shows the typical cascaded multilevel 
inverter topology. 

In Diode-clamped multilevel inverter [3], all the phases 

share a common dc bus, which minimizes the capacitance 
requirements. The voltage stress across each switching device 
is limited to V

DC

 through the clamping diodes. 

 
 

 

Fig. 1. Cascaded Multilevel Topology 

 

The number of diodes required for each phase is (m-1)*(m-

2), where ‘m’ is the number of required levels. The efficiency 
of diode clamped inverter is high for fundamental switching 
frequency.In the absence of precise monitoring and control, the 
system will tend to overcharge or discharge the intermediate dc 
levels. Figure 2 shows the typical diode clamped inverter [7]. 

 

Fig. 2. Diode Clamped Multilevel Topology 

 

In capacitor clamped (flying-capacitor)multilevelinverter 

[3], multiple capacitors are used to limit the voltage stress 
across each switching device. This topology uses a ladder 
structure of capacitors as shown in Figure 3, where the voltage 
on each capacitor differs from that of the next capacitor.  

One major advantage of the flying–capacitor based inverter 

is that it provides redundancies for inner voltage levels. The 
system requires (m-1)*(m-2)/2 auxiliary capacitors per phase if 
the voltage rating of the capacitors is identical to the main 
switches, in addition to (m-1) dc link capacitors. The use of 
large number of capacitor makes the system more expensive 
and bulky. 

The current work reveals a new topology utilizing the 

advantage of multi-winding multi tapped transformer and DC-
DC converter. In this topology, the number of switches, diodes 
and capacitors required is very few. Diodes are used only for 
rectification and freewheeling, and not for clamping.   

 

Fig. 3. Flying Capacitor Topology 

 

Using a single DC voltage source at the input, the system 

derives several output voltage levels. 
 
 

III.

  T

HE 

P

ROPOSED 

S

YSTEM

 

 

 

Fig.4.The proposed multilevel inverter topology 

 

background image

A.

  Description of the first stageinverter 

The circuit diagram of the proposed multilevel topology is 

shown in Figure 4. The main function of the first stage inverter 
is to derive multiple DC levels at the secondary tappings from 
a single DC supply input. The full bridge diode rectifier stage 
acts as an interface between the first and the second stage 
inverters.  

B.

  Description of the second stage inverter 

The second stage inverter synthesizes twenty seven output 

voltage levels from four DC input levels by selective addition 
and subtraction of magnetic flux in the transformer core.The 
full bridge rectifiers at the interface can act as separate DC 
sources at the second stage inverter input. 

C.

  Role of capacitors and diodes in the circuit 

Diodes are used in the circuit mainly for rectification and 

freewheeling. The freewheeling diodes help to eliminate 
switching spikes in the output waveform. The capacitor can not 
only filter the first stage DC output, but it can also serve as DC 
link to the second stage. The proposed topology can efficiently 
minimize the voltage unbalance problem which is a common 
issue in most of the conventional topologies.  

D.

  Embedded control system  

Precise monitoring and control is a vital part of the inverter 

operation. The real time control system for the proposed 
topology can be implemented using an embedded controller. 
All the switching strategy can be programmed into the 
controller. Also the embedded controller can regulate the 
output by generating compensatory gating pulses for the 
switches. All the essential protective measures can be 
incorporated with the embedded logic. 

 

E.

  Description of switching strategy 

 

TABLE 1 

 

SWITCHING STATES 

VOLTAGE 

LEVELS 

H1 L1 H2 L2 H3 L3 

 

0 1 0 1 0 1 

-V 

0 1 0 1 0 0  -12V/13 
0 1 0 1 1 0  -11V/13 
0 1 0 0 0 1  -10/13V 
0 1 0 0 0 0  -9V/13 
0 1 0 0 1 0  -8V/13 
0 1 1 0 0 1  -7V/13 
0 1 1 0 0 0  -6V/13 
0 1 1 0 1 0  -5V/13 
0 0 0 1 0 1  -4V/13 
0 0 0 1 0 0  -3V/13 
0 0 0 1 1 0  -2V/13 
0 0 0 0 0 1  -V/13 
0 0 0 0 0 0 

0 0 0 0 1 0  +V/13 
0 0 1 0 0 1  +2V/13 

0 0 1 0 0 0  +3V/13 
0 0 1 0 1 0  +4V/13 
1 0 0 1 0 1  +5V/13 
1 0 0 1 0 0  +6V/13 
1 0 0 1 1 0  +7V/13 
1 0 0 0 0 1  +8/13V 
1 0 0 0 0 0  +9V/13V 
1 0 0 0 1 0  +10V/13 
1 0 1 0 0 1  +11V/13 
1 0 1 0 0 0  +12V/13 
1 0 1 0 1 0 

+V 

 

Even though the proposed system uses eight switches, the 

output voltage levels are directly influenced only by the six 
switches at the input of the second stage inverter. The required 
levels are obtained by the selective addition and subtraction of 
magnetic flux linked with the transformer core. This is 
achieved by selecting the correct combination of switches. To 
obtain the correct wave shape for the output voltage, it is 
important to choose the switching sequence properly. Table 1 
describes the switching strategy for the proposed system. 

Using six switches at the input of the second stage inverter, 

we obtain twenty seven voltage levels. Twenty seven switch 
combinations are required to synthesize these twenty seven 
output voltage levels. The switching states are as shown in 
Table 1. 

The outputs voltage levels of the three rectifier bridges are in 

the ratio 9:3:1. This can be achieved by the proper design of 
the first stage transformer. Various output voltage levels can be 
synthesized by selecting switching combinations as described 
below: 
•  For voltage level +V, switches H1,H2 and H3 are turned 

on. The output of the bridges B1,B2 and B3 gets added up 
(9+3+1). 

•  For voltage level +12V/13, the switches H1 and H2 are 

turned on.The output of the bridge B1 which is 9V adds up 
with the output of bridge B2 which is 3V to obtain +12V 
(9+3). 

•  For voltage level +11V/13, the three switches H1,H2 and 

L3 are turned on. The output of bridges B1 and B2 gets 
added up while the output of bridge B3 gets subtracted 
(9+3-1).  

•  For voltage level +10V/13, the switches H1and H3 are 

turned on. The outputs of B1 and B3 gets added (9+1). 

•  For voltage level +9V/13, the switch H1 is turned on. 
•  For voltage level +8V/13, the switches H1 and L3 are 

turned on. The output of B3 gets subtracted from the output 
of B1 (9-1). 

•  For voltage level +7V/13, three switches H1,L2 and H3 are 

turned on (9-3+1). 

•  For voltage level +6V/13, the switches H1 and L2 are 

turned on (9-3). 

background image

•  For voltage level +5V/13, three switches H1,L2 and L3(9-

3-1). 

•  For voltage level +4V/13, the switches H2and H3 are 

turned on (3+1). 

•  For voltage level +3V/13, the switch H2 is turned on. 
•  For voltage level +2V/13, the switches H1 and L3 are 

turned on (3-1). 

•  For voltage level +1V/13, the switchH3 are turned on. 
•  For voltage level 0, all the seven switches are turned off. 
Similar is the case for negative voltage levels. 
 
 
F.

  Standalone Second Stage Inverter Application 

The second stage inverter of the proposed topology can act 

as a standalone multilevel inverter with isolated multiple dc 
sources. Thus the topology is well suited for renewable power 
conversion applications such as solar and wind based systems 
provided the same 9:3:1input dc source voltage ratio is 
maintained properly. The simulation results presented in the 
following section is also valid for the standalone topology. 
 

 

 

 

 

IV.

 

S

IMULATION 

R

ESULTS

 

 

F

IG

.

 

PSPICE Simulation Result- Unfiltered waveform

 

 

A.

  PSPICE Simulation 

The operation of the proposed topology is tested in PSPICE 

and the output obtained is shown in figure7.It shows an 
unfiltered staircase waveform with 27 voltage levels. Since 
PSPICE does not include any templates for the multi-winding 
multi-tapped transformer by default, derived models are 
synthesized from the available basic models. Also the 
unavailability of state machines in default PSPICE library can 
make the simulation tedious. So the PSPICE simulation is used 
for testing the peak to peak 27voltage level switching sequence 
over a period of 180

o

 as shown in figure 7. The complete 

switching strategy is tested using MATLAB SIMULINK 
[8],[9]. 

 
 

B.

  MATLAB simulation 

In order to perform a more detailed evaluationof the 

proposed multilevel inverter system, MATLABis used. The 
complete topology is modeled using SIMULINK toolbox and 
the control logic is tested. Figure 8 shows thedc output 
obtained from the first stage convertor which ensures 9:3:1 
input voltage ratios for feeding the second stage. The filter 
capacitors of the first stage can ensure stable dc input supplies 
for the second stage.  

The final output waveform of the second stage is a 27 level 

staircase waveform as shown in figure 9. For a purely resistive 
load the shape of the current waveform is exactly similar to the 
voltage waveform. As the load becomes inductive the staircase 
current waveform takes the shape of a sinusoidal wave. The 
Fourier analysis of the voltage and current waveforms at the 
output of the system shows a low THD of 3.99%. The quality 
of the output wave shape can be significantly increased by 
introducing proper pulse width modulation strategy along with 
the switching scheme. 

 
 

 

 

Fig. 8 

MATLAB Simulation Results - First Stage Output 

 

 
 

 

Fig. 9 

MATLAB Simulation Results– Final Output 

 
 
 

background image

V.

 

A

DVANTAGES

 

A

ND

 

D

ISADVANTAGES

 

O

F

 

T

HE

 

P

ROPOSED

 

S

YSTEM 

The proposed system uses only minimal number of switches 

and capacitors. No clamping diodes are used in the system. 
Unlike the other conventional topologies, the proposed 
topology uses a only single DC source to synthesize output 
voltage levels and the number of levels increases drastically by 
increasing the number of windings in the transformer. The 
design is made in such a way that the capacitors that are idle 
during a switching period are continuously charged, thereby 
reducing the capacitor voltage unbalancing problem to a 
greater extend when compared to the conventional topologies.  

Inspiteof these advantages, the use of transformers makes 

the system bulky. Also the transformer design process makes 
the system design tedious. 

 

VI.

 

C

ONCLUSION 

A wide range of modern high power applications demand a 

high quality sinusoidal power supply. In order to satisfy the 
requirement, multilevel inverter topologies are commonly 
preferred. The demerits of the conventional topologies limit 
their applications in various fields. The proposed topology can 
efficiently minimize the main drawbacks of the conventional 
topologies and it can provide a large number of output levels to 
create a purely sinusoidal power supply. Even though the use 
of multi-winding multi-tapped transformer increases the design 
complexity of the topology, the resulting circuit is simple and 
having minimum number of components. For the complete 
development of the proposed system, more research needs to 
be done in designing proper control strategy along with 
suitable real-time embedded controller and multi-tapped multi-
winding transformers. 

 

                                R

EFERENCES 

[1] J. Rodriguez, J.S. Lai; F.Z. Peng, “Multilevel inverters:A 
survey oftopologies, controls, and applications”, IEEE 
Trans.on Industrial Electronics
,vol.49, no.4, Aug. 2002, pp. 
724-738. 
[2]P.Panagis,F.Stergiopolos, P.Marabeas, 
S.Manios.“Comparison of state of the art multilevel 
inverters,”Power Electronics Specialists Conference PESC 
2008,IEEE
, 2008, pp. 4296-4301. 
[3]R.W.Erickson,“Fundamentalsof Power 
electronics,"Chapman and Hall ,May 1997. 
[4]M.Wenzhong and K.L.L.Yaohua,“Research on a multilevel 
high power converter,“IEEEInternational conference on 
industrial application
, vol. 1, 2004, pp. 341-344. 
[5]E.Herbert, “Transformer SPICE model,” February 14, 2008. 
[6]L.G.Meares and C.E. Hymowitz, “SPICE models for power 
electronics,”. 
[7]X.Yuan and I.Barbi,“Fundamentals of a new diode 
Clamping Multilevel inverter,” IEEE Trans.onPower 
Electronics
, vol.15, No. 4, July 2000, pp. 711-718. 
[8] Chin-Chiang Hua, Chu-Wei Wu and Chih-Wei Chuang, 
“Fully digital control of 27-level cascade inverter with 
variable DC voltage sources,”2007 Second IEEE Conference 
on Industrial Electronics and Application 

[9] F.S.Kang, S.J.Park, M.H.Lee and C.U.Kin, “An efficient 
multilevel synthesis approach and its application to a 27 level 
inverter,”  IEEE Trans. on industrial electronics vol.52, no.6 
,december 2005