p39 046

background image

46. We rewrite Eq. 39-9 as

h

h

cos φ =

v

1

(v/c)

2

cos θ ,

and Eq. 39-10 as

h

sin φ =

v

1

(v/c)

2

sin θ .

We square both equations and add up the two sides:

h

m

2

1

λ

1

λ

cos φ

2

+

1

λ

sin φ

2

=

v

2

1

(v/c)

2

,

where we use sin

2

θ + cos

2

θ = 1 to eliminate θ. Now the right-hand side can be written as

v

2

1

(v/c)

2

=

−c

2

1

1

1

(v/c)

2

,

so

1

1

(v/c)

2

=

h

mc

2

1

λ

1

λ

cos φ

2

+

1

λ

sin φ

2

+ 1 .

Now we rewrite Eq. 39-8 as

h

mc

1

λ

1

λ

+ 1 =

1

1

(v/c)

2

.

If we square this, then it can be directly compared with the previous equation we obtained for [1

(v/c)

2

]

1

. This yields

h

mc

1

λ

1

λ

+ 1

2

=

h

mc

2

1

λ

1

λ

cos φ

2

+

1

λ

sin φ

2

+ 1 .

We have so far eliminated θ and v. Working out the squares on both sides and noting that sin

2

φ+cos

2

φ =

1, we get

λ

− λ = ∆λ =

h

mc

(1

cos φ) .


Document Outline


Wyszukiwarka

Podobne podstrony:
p39 046
p36 046
P22 046
p39 039
p39 065
p44 046
p11 046
p39 071
p19 046
p39 033
07 2005 046 049
p07 046
p39 075
p33 046
046 normy zharmoniz zał nr 1
046 ADMM
p38 046
p12 046
p40 046

więcej podobnych podstron