background image

Development of Wind Power Control System for 

Six-Phase Permanent-Magnet Synchronous Generators 

 

*Sheng-Nian Yeh, Jonq-Chin Hwang, Ming-Chih Hsieh, Li-Hsiu Chen 

Department of Electrical Engineering, National Taiwan University of Science and Technology 

43, Section 4, Keelung Road, Taipei 106, Taiwan 

phone: 886-2-27376668        fax: 886-2-27376699        Email: snyeh@mail.ntust.edu.tw 

 

Abstract: This paper presents the development of wind power system with 6-phase permanent-magnet 
synchronous generators. The proposed system can not only yield high power density of generator and 
capacity of power converters, but also reduce the voltage ripple at the output of rectifiers. A 6-phase, 
full-controlled ac-to-dc power converter is used to convert varying voltages from 6-phase 
permanent-magnet synchronous generator to constant dc voltage. The mathematic model of the 
6-phase switching-mode rectifier is derived. The current control method of dual 3-phase synchronous 
rotating frame transformation is proposed to reduce the current harmonics and increase the power 
factor on input side of generator, and thereby increase the efficiency of the power converter. In 
addition, a buck/boost chopper is designed to charge and discharge the battery set. Fixed-voltage 
control method is used to supply load power from battery when speed of wind turbine is low. It thus 
can accomplish the management of energy balance control and enhance the stability of the whole 
system. A low-cost, 16-bit digital signal processor (DSP, TMS320LF2407A) is used to serve as the 
core control device to implement a 768 W prototype generation system. The experimental data show 
that the efficiency of the ac-to-dc power converter reaches 90%. The current harmonics and the power 
factor on output side of generator are 3.34% and 0.95, respectively. Finally, experiments are given to 
justify the feasibility of the proposed system. 

Key words: 6-phase, permanent-magnet synchronous generator, power converter 

 

I. 

Introduction 

This paper presents a high-performance, low-cost 

and small-scale 6-phase permanent-magnet 
synchronous wind power generation system. In a 
traditional three-phase permanent-magnet 
synchronous generator system, limited by the 
technology of power converters, the power 
conversion is possible only if a certain level of wind 
turbine speed have been achieved [1]. 

A 6-phase, 24-slot, 22-pole permanent-magnet 

synchronous generator (PMSG) is designed in this 
paper. The stator is composed of a double Y 
connection and mid-point tap architecture with 
concentration windings. A corresponding 6-phase, 
full-bridge, full-controlled ac-to-dc power converter 
is also presented in this paper. According to different 
dc-link connections, the proposed power converter 
can be operated at series- or shunt-connected mode. 
When the wind speed is in a specified range, the 
power converter is switched to the shunt-connected 
mode for normal operation, while when the wind 
speed is low, the power converter is series-connected 
in order to maintain a stable voltage in the dc-link. 

This paper is concerned with the analysis and 

implementation of a 6-phase ac-to-dc power 
converter for low-capacity 6-phase 
permanent-magnet synchronous wind-driven 
generator system. Fig. 1 shows the system topology. 
It consists of a 6-phase wind-driven generator, an 
encoder, a 6-phase full-bridge full-controlled power 
converter, and a buck/boost dc chopper. All the 

corresponding controllers are implemented and 
integrated by a single digital signal processor (DSP). 

II.  Analysis and Implementation of the 

6-phase PMSG system 

The system consists of wind-driven generators, 

battery sets, power converters, and digital controllers. 
A servo-motor is used to drive the generator through 
mechanical coupling for a simulation of wind-blade 
subsystem. To cope with the ac-to-dc power 
converter, an encoder at the rotor is introduced to 
provide angle feedback of magnetic poles. 

The rectifier converts 6-phase ac current from the 

generator to a stable 48 V dc-link voltage. In order to 

improve the reliability of the dc power, a 36 V 

battery set is installed to work with buck/boost 

choppers to maintain constant dc-link voltage and 

power balance for varying wind speed [2]. 

The digital control unit is based on a low-cost 

16-bit DSP manufactured by Texas Instrument. It has 
40 million instructions per second (MIPS) execution 
speed, which is quite suitable for the development of 
this system. The interface circuits of the DSP consist 
of four major parts. They are one joint test action 
group (JTAG) port for debugging, two groups of 
pulse-width modulation (PWM) circuits, 16 channels 
of 10-bit analog-to-digital (A/D) converters for the 
system voltage and current feedback, and a pulse 
decoding circuit for the encoder. All are for the 
current and power control of the 6-phase 
permanent-magnet synchronous wind-driven 
generator system. 

 

1/7

background image

PMSG

6

φ

a

T

b

T

c

T

a

T

+

b

T

+

c

T

+

x

T

y

T

z

T

x

T

+

y

T

+

z

T

+

2

dc

C

1

dc

C

b

L

B

T

+

B

T

B

v

B

i

dc

v

b

i

B

i

B

v

y

i

x

i

a

i

a

i

x

i

y

i

b

i

c

i

z

i

dc

v

A

B

Z

1

S

2

S

 

Fig. 1 Topology of a 6-phase wind-driven power generator system.

A.  6-phase PMSG 

The permanent magnet of the generator uses 

rare-earth material. It has several outstanding 
properties including high residual induction, high 
coercivity, high magnetic energy product, and linear 
demagnetization curve [3]. These properties allow 
larger air gap and magnetic flux density in machines, 
and bring flexibilities to the installation of permanent 
magnets and the design of magnetic circuits. It is 
possible to produce generators that are different from 
the traditional ones in their architectures, shapes, 
sizes, according to the requirements of applications. 
The material of NdFeb (N42) is applied for the 
proposed 6-phase PMSG in this paper. 

The winding of the 6-phase generator only has to 

bear a current that is half of the current in a 3-phase 
generator. This is because that the 6-phase generator 
has two groups of 3-phase windings, and is thus 
easier to remove waste heat. A commercial software 
package called Magsoft Flux2D is used in this paper 
to implement the analysis on magnetic circuits and 
electric properties of the generator system required. 
Fig. 2 shows the simulated section drawing of the 
proposed generator. 

The analysis is conducted by using the mathematic 

model of the 6-phase PMSG, and calculating the 
related parameters such as equivalent flux linkages, 
stator equivalent resistors, and winding inductances 
[4]. When the generator is under no-load, its output 
phase voltage equals the magnetization voltage 

Hence, the stator equivalent magnetic flux linkage 
can be expressed as: 

m

E

m

m

r

E

λ

ω

′ =

 (1) 

Since the generator is built by a double Y connection 
and mid-point tap architecture, one can find its dc 
resistance by applying a dc voltage between any two 
phases [5]. The equivalent stator resistance can be 
obtained as: 

2

s

dc

dc

R

V

I

=

 (2) 

Transforming to synchronous frame [6], one can 

obtain the quadrature- and direct-axis inductances 

from the following equations by retrieving the output 

voltages, the output currents, and the rotation speed: 

'

1

1

11 1

12

r

r

r

r

r m

q

s q

r

d

d

r

d

d

v

r i

L

i

L

i

ω λ

ω

ω

=

+

+

+

2

)

1

r

1

)

 (3) 

1

1

11 1

12 2

0

(

r

r

r

r

d

s d

r

q

q

q

q

v

r i

L

i

L

i

ω

=

+

+

 (4) 

'

2

2

22 2

21

r

r

r

r m

q

s q

r

d

d

r

d

d

v

r i

L

i

L

i

ω λ

ω

ω

=

+

+

+

 (5) 

2

2

22 2

21

0

(

r

r

r

r

d

s d

r

q

q

q

q

v

r i

L

i

L

i

ω

=

+

+

 (6) 

Since the generator is of the surface mounted type, 

the self-inductances of the windings in quadrature- 

and direct-axis are the same. i.e., 

11

11

q

d

L

L

=

 (7) 

22

22

q

d

L

L

=

 (8) 

Due to the fact that the mutual inductances 

12

q

L

12

d

L

21

q

L

, and 

21

d

L

  are small, they are neglected. 

From equations  (1) to (8), one obtains the magnetic 
flux linkages of 0.039V-s/rad, the stator equivalent 
resistance of 0.23 ohm, and the self-inductances 

11

22

11

22

0.31

q

q

d

d

L

L

L

L

m

=

=

=

=

H

 

Fig. 2 Sectional drawing of the magnetic circuit 

analysis for the proposed generator. 

 

2/7

background image

B.  6-phase ac-to-dc power converter 

A 6-phase ac-to-dc full-bridge full-controlled 

power converter is proposed as shown in Fig. 3, 
where 

 is the dc-link voltage; 

  and 

 

are the capacitances of the dc-link; 

 signifies 

resistive load. Appropriate switching control in the 
converter can yield unity power factor, small dc-link 
voltage ripples, and reduce the harmonic loss of the 
generator [7]. Continuous conduction mode is 
exercised to have less generator output current 
harmonics, and thereby results in sinusoidal current 
waveform. In addition, to avoid shorting the rectifier, 
the upper and lower power switches of the same arm 
must be operated mutual exclusively with dead time. 

dc

v

1

dc

C

2

dc

C

dc

R

Table 1 lists the operation modes of the proposed 

converter. When the wind generator is running at low 
speed, the converter is switched to series-mode to 
maintain a stable dc-link voltage of the form 

. On the other hand, when the wind 

speed lies within a normal range, the converter is 
switched to parallel-mode. Since the 6-phase ac-to-dc 
power converter is composed of two groups of 
three-phase ac-to-dc converters, the current passing 
though the power transistors of the converters can be 
distributed equally. Besides, if one group fails, the 
system is capable of providing an output with half of 
the rated power. It is more reliable than conventional 
converters. 

1

dc

dc

dc

v

v

v

=

+

2

From Fig. 3 and the parameters obtained above, 

the differential equations from the winding a-b-c and 
the dc-link capacitors can be expressed as: 

11

a

a

s a

d

L

i

e

R i

v

dt

=

a

 (9) 

11

b

b

s b

d

L

i

e

R i

v

dt

= −

b

 (10) 

11

c

c

s c

d

L

i

e

R i

v

dt

= −

c

 (11) 

1

1

1

1

dc

dc

dc

a

a

b b

c c

dc

dc

v

d

C

v

i

i S

i S

i S

i

dt

R

= −

=

+

+

1

 (12) 

2

2

2

2

dc

dc

dc

x

x

y

y

z

z

dc

dc

v

d

C

v

i

i S

i S

i S

i

dt

R

= −

=

+

+

2

(13) 

The corresponding equations for winding x-y-z are 
similar to  (9)-(11). i.e., 

22

x

x

s x

d

L

i

e

R i

v

dt

= −

x

 (14) 

22

y

y

s y

d

L

i

e

R i

v

dt

=

y

 (15) 

22

z

z

s z

d

L

i

e

R i

v

dt

= −

z

 (16) 

In the proposed system, the output voltages and 
currents are time-varying, and its dynamic analysis 
and control are relatively difficult. Therefore, the 
dual three-phase synchronous rotating frame is used 

a

T

b

T

c

T

x

T

y

T

z

T

a

i

b

i

c

i

x

i

y

i

z

i

s

R

s

R

s

R

s

R

s

R

s

R

22

L

22

L

22

L

x

e

y

e

z

e

1

dc

v

2

dc

v

1

dc

C

2

dc

C

dc

v

dc

R

a

T

+

b

T

+

c

T

+

x

T

+

y

T

+

z

T

+

a

e

b

e

c

e

11

L

11

L

11

L

1

S

2

S

Fig. 3 Topology of the 6-phase full-bridged, 

full-controlled converter. 

to simplify controller design [9]. For the balanced 
6-phase generator output system, the quadrature- and 
direct-axis voltage equations can be written as: 

1

1

1

11

1

11

(

)

r

r

r

r

r

q

q

s q

q

q

r

q

d

d

v

e

R i

L

i

L

i

dt

ω

=

+

1

 (17) 

1

1

1

11

1

11

(

)

r

r

r

r

d

d

s d

d

d

r

d

d

v

e

R i

L

i

L

i

dt

ω

=

+

+

1

r

q

 (18) 

2

2

2

22

2

22

(

)

r

r

r

r

r

q

q

s q

q

q

r

q

d

d

v

e

R i

L

i

L

i

dt

ω

=

+

2

 (19) 

2

2

2

22

2

22

(

)

r

r

r

r

r

d

d

s d

d

d

r

d

q

d

v

e

R i

L

i

L

i

dt

ω

=

+

+

2

r

°

°

− °

°

°

°

°

°

°
°

m

 (20) 

Since the system is linear, proportional-integral 
controllers are applied for generator output current 
tracking. Suppose that the generator voltages are: 

cos

a

r m

e

ω λ

θ

=

 (21) 

cos(

120 )

b

r m

r

e

ω λ

θ

=

 (22) 

cos(

240 )

c

r m

r

e

ω λ

θ

=

 (23) 

cos(

30 )

x

r m

r

e

ω λ

θ

=

 (24) 

cos(

150 )

y

r m

r

e

ω λ

θ

=

 (25) 

cos(

270 )

z

r m

r

e

ω λ

θ

=

 (26) 

With appropriate control parameters, the 
corresponding generator output currents are: 

1

cos(

)

a

m

r

i

i

I

θ θ

=

 (27) 

1

cos(

120 )

b

m

r

i

i

I

θ θ

=

− −

 (28) 

1

cos(

240 )

c

m

r

i

i

I

θ θ

=

− −

 (29) 

2

cos(

30 )

x

m

r

i

i

I

θ θ

=

− −

 (30) 

2

cos(

150 )

y

m

r

i

i

I

θ θ

=

− −

 (31) 

2

cos(

270 )

z

m

r

i

i

I

θ θ

=

− −

 (32) 

where 

 and 

 are peak output currents of 

windings a-b-c and x-y-z, and 

 is the phase 

difference between the output voltages and the output 
currents. Transforming 

1

m

I

2

m

I

i

θ

(21)-(26) into synchronous 

frame yields the quadrature- and direct-axis voltages 
of the generator: 

1

r

q

r

e

ω λ′

=

 (33) 

 

3/7

background image

1

0

r

d

e

=  (34) 

2

r

q

r

e

ω λ′

=

m

i

i

i

i

 (35) 

2

0

r

d

e

=  (36) 

Likewise, transforming (27)-(32) into synchronous 
frame results in: 

1

1

cos

r

q

m

i

I

θ

=

 (37) 

1

1

sin

r

d

m

i

I

θ

=

 (38) 

2

2

cos

r

q

m

i

I

θ

=

 (39) 

2

2

sin

r

d

m

i

I

θ

=

 (40) 

From  (33)-(36) and (37)-(40), one can get the real 
and reactive powers from the generator: 

1

3
2

r

abc

r

m q

P

ω λ

=

i

 (41) 

1

3
2

r

abc

r

m d

Q

ω λ

=

i

 (42) 

2

3
2

r

xyz

r

m q

P

ω λ

=

i

 (43) 

2

3
2

r

xyz

r m d

Q

ω λ

=

i

 (44) 

From  (37)-(44), one can let the direct-axis current be 
zero, then the quadrature-axis currents will have the 
same peak values of the generator output current, 
when the output currents are in phase with output 
voltages. Under this circumstance, the reactive power 
of the generator output is zero, and the active power 
can be controlled by the quadrature currents 

 and 

. Based on the above strategy, a control system of 

the 6-phase ac-to-dc power converter is proposed in 
Fig. 4. The dual three-phase synchronous 
transformation matrices depicted in the figure are the 
interface between control and feedback signals, and 
they synchronously vary with the rotation speed of 
the generator. The matrices 

,  

 can be obtained from 

substituting 

 and 

 for 

1

r

q

i

2

r

q

i

0

0

( ),

(

30 )

qd

r

qd

r

T

T

θ

θ −

o

1

1

0

0

( ),

(

30 )

qd

r

qd

r

T

T

θ

θ

o

r

θ

€ 30

r

θ

°

x

 in  the 

following equations: 

0

1

1

cos

cos(

120 ) cos(

240 )

2

( )

sin

sin(

120 ) sin(

240 )

3

1

1

1

2

2

2

cos

sin

1

( )

cos(

120 ) sin(

120 ) 1

cos(

240 ) sin(

240 ) 1

qd

qdo

x

x

x

T

x

x

x

x

x

x

T

x

x

x

x

x

°

°

°

°

°

°

°

°

=

=

*

2

d

 (45) 

From the transformed current signals in synchronous 
frame, the output commands 

, and 

 are calculated by the proportional-integral 

controllers for the PWM output. 

*

1

q

v

*

1

d

v

*

2

q

v

v

C.  Storage System 

In order to maintain power balance between the 

wind-driven generator and loads under varying wind 
speed, a storage system consisting of buck/boost 
choppers and battery sets is installed at the dc-link. 
When the output power of the wind generator system 
is larger than the loads, the dc chopper is operated in 
the buck mode to transfer residual power to the 
battery. Reversely, it is operated in the boost mode to 
replenish the deficit in generator output power. 

III.  Experimental Results 

This paper completes the system prototype 

according to the system proposed in Fig. 1 with the 
specifications: 
z  Number of poles of permanent magnet 

synchronous generator: 22 

z  Rated power: 1 kW 
z  Rated current: 20 A 
z  Rated rotation speed: 1000 rpm 
z  Capacitance of the dc-link: 3300 μF 
z  Inductance 

B

L

  of dc chopper: 0.5 mH 

z  Sampling period: 100 μs 
In order to verify the stability and reliability of the 
proposed system, experiments are conducted on 
loading and no-load operations under constant as 
well as varying rotation speeds for the proposed 
system. Fig. 5 shows a phase difference of 30 degree 
between the currents   and 

a

i

x

i

, which meets the 

design of the presented generator architecture. To 
evaluate the reliability of the overall system, Fig. 6 
shows the transient and steady-state currents 

 and 

a

i

x

i

  of generator output, when winding x-y-z/rectifier 

x-y-z fails. Under this circumstance, dc-link voltage 
remains constant as can be seen from Fig. 6. At 550 
rpm and a full-load of 768W, Fig. 7 shows the 
voltage, current and corresponding current harmonic 
spectrum in the steady-state. The total harmonic 
distortion of current is only 3.59%, and the power 
factor is close to unity. Finally, to test the dynamic 
response, a servo-motor is used to simulate the 
varying wind speed. The rotation speed of the 
generator is dropped from 500 to 0 rpm, and then 
increased from 0 to 400 rpm. The results in Fig. 8 
shows that this wind generator system is capable of 
providing a stable power, which is unaffected by the 
wind speed. 

IV.  Conclusions 

This paper presents the generation system, which 

integrates the 6-phase PMSG, the 6-phase ac-to-dc 
power converter, and the buck/boost choppers in 
order to supply a stable dc power under varying wind 
speed. The magnetic circuit analysis is conducted for 
the proposed 6-phase generator by Magsoft Flux2D, 

 

4/7

background image

and the corresponding mathematic model are used   

r

ω

ˆ

r

θ

a

i

b

i

x

i

y

i

1

dc

v

,

a

a

T

T

+

,

b

b

T

T

+

,

c

c

T

T

+

,

x

x

T

T

+

,

y

y

T

T

+

,

z

z

T

T

+

SPWM

1

ˆ

( )

qdo

r

T

θ

1

0

ˆ

(

30 )

qdo

r

T

θ

ˆ

( )

qdo

r

T

θ

0

ˆ

(

30 )

qdo

r

T

θ −

1

q

i

2

q

i

1

d

i

2

d

i

*

1

q

i

*

2

q

i

*

*

1

2

0

d

d

i

i

=

=

*

*

*

1

2

dc

dc

dc

v

v

v

=

=

1

dc

v

*

1

q

u

*

1

d

u

*

2

d

u

*

2

q

u

*

1

q

v

*

1

d

v

*

2

q

v

*

2

d

v

vdc

G

1

iq

G

1

id

G

2

iq

G

2

id

G

1

r

s d

r

m

L i

ω

ω λ ′

+

2

r

s d

r

m

L i

ω

ω λ ′

+

1

r

s q

L i

ω

2

r

s q

L i

ω

a

i

b

i

x

i

y

i

, ,

A B Z

1

2

dc

v

 

Fig. 4 The control block diagram of the 6-phase ac-to-dc power converter. 

for the parameter calculations of the equivalent flux 
linkages, the stator equivalent resistance, and the 
winding inductors. The resulted parameters help the 
proposed 6-phase ac-to-dc power converter build the 
dynamic equations for the system control. The 
control of the rectifier with dual three-phase 
coordinate transformation simplifies the control 
parameter design, and improves the system dynamic 
response. 

The experiments on a full-load of 768 W are given 

to justify the design and the analysis of the proposed 
generator. Loading and reliability evaluation are 
conducted to show the excellent performance of the 
system. The experimental results reveal high power 
factor and low harmonic distortion with efficiency of 
90%, thereby verifies the practicality of the proposed 
6-phase wind generation system. 

References 

[1]  F. Wang, Z. Wenpeng, Z. Ming and W. Baoguo, 

“Design considerations of high-speed PM 

generators for micro turbines,” International 
Conference on Power System Technology
, vol. 

1, 2002, pp. 158-162. 

[2]  M. K. Kazimierczuk, “Analysis and design of 

buck/boost zero-voltage-switching resonant 

dc/dc convertor,” IEE Proceedings of Circuits, 
Devices and Systems
, vol. 136, 1989, pp. 

157–166. 

[3]  F. Wang, M. Zong, W. Zheng and E. Guan, 

“Design features of high speed PM machines,” 
Sixth International Conference on Electrical 
Machines and Systems
, vol. 1 , 2003, pp. 66-70. 

[4]  Z. Cunshan and T. Feng,”Research on 

improving permanent magnetic generator output 

characteristic,”  Fifth International Conference 
on Electrical Machines and Systems
, vol. 2, 

2001. pp. 850-852. 

[5]  E. Muljadi, C. P. Butterfield and Y.-H. Wan, 

“Axial-flux modular permanent-magnet 

generator with a toroidal winding for 

wind-turbine applications,” IEEE Transactions 
on Industry Applications
, vol. 35, no. 4, 1999, 

pp. 831–836. 

[6]  S. M. A. Sharkh, D. Morris, S. R. Turnock, L. 

Myers and A. S. Bahaj, “Performance of an 

integrated water turbine PM generator,” 
International Conference on Power Electronics, 
Machines and Drives
, 2002, pp. 486–491. 

[7]  C. Mademlis, I. Kioskeridis and N. Margaris, 

“Optimal Efficiency Control Strategy for 

Interior Permanent-Magnet Synchronous Motor 

Drives,”  IEEE Transactions on Energy 
Conversion
, vol. 19, 2004, pp. 715–723. 

[8]  E. Cengelci and P. Enjeti, “Modular PM 

generator/converter topologies, suitable for 

utility interface of wind/micro turbine and 

flywheel type electromechanical energy 

conversion systems,” IEEE Industry 
Applications Annual Conference Record
, vol. 4, 

2000, pp. 2269-2276. 

[9]  N. Bianchi, S. Bolognani and F. Luise, 

“Potentials and Limits of High-Speed PM 

motor,” IEEE PESC’04, vol. 1, 2004, pp. 

458-463. 

Acknowledgement 

The authors wish to express their sincerely 

appreciation to Nation Science Council for 

supporting this research with grant NSC 

94-2213-E-011-069. 

 

Table 1 Operation mode of the proposed converter 

Switch status 

Operation mode 

Dc-link voltage 

1

2

:

,

:

S

on S

off

Serial mode 

1

2

dc

dc

dc

v

v

v

=

+

1

2

:

,

:

S

off S

on

Parallel mode 

1

2

dc

dc

dc

v

v

v

=

=

1

2

:

,

:

S

off S

off

Converter off 

0

dc

v

=  

 

 

5/7

background image

-40

-30

-20

-10

0

10

20

30

40

(

)

10

time

ms div

( )

a

 

-40

-30

-20

-10

0

10

20

30

40

( )

x

(

)

10

time

ms div

( )

b

 

Fig. 5 Phase difference of output currents from phase 
a and phase x: (a)phase current 

; (b)phase current 

a

i

x

i

-40

-30

-20

-10

0

10

20

30

40

( )

(

)

20

time

ms div

( )

a

 

-40

-30

-20

-10

0

10

20

30

40

(

)

20

time

ms div

( )

b

0

10

20

30

40

50

60

70

80

(

)

20

time

ms div

( )

c

 

Fig. 6 Reliability evaluation under one generator 
winding and/or its corresponding rectifier outage at 
500 rpm and a load of 256W: (a)phase current 

(b)phase current 

a

i

x

i

; (c)dc-link voltage 

dc

v

-40

-30

-20

-10

0

10

20

30

40

(

)

10

time

ms div

( )

a

 

-40

-30

-20

-10

0

10

20

30

40

(

)

10

time

ms div

( )

b

 

g (

0

20

40

60

80

100

)

THD= 3.59%

Harmonic order

0

2

4

6

8

10

12

14

16

18

20

(c)

 

Fig. 7 Experimental results under rotor speed of 550 
rpm and resistive load of 768 W: (a)output voltage 

, (b)phase current 

; (c)current harmonic 

spectrum of 

a

v

a

i

a

i

0

10

20

30

40

50

60

70

80

(

)

2

time s div

( )

a

 

0

5

10

15

20

25

30

35

40

(

)

2

time s div

( )

b

 

 

6/7

background image

-40

-30

-20

-10

0

10

20

30

40

(

)

2

time s div

( )

c

 

Fig. 8 Dynamic test results under varying wind 
speed: (a)dc-link voltage 

; (b)output current of 

the battery set 

; (c)output current of the generator 

dc

v

B

i

a

i

 

 

7/7