8.à$'<=)$=2:37/635=)(1,$
=:5271(*2
:352:$'=(1,(
8NáDG\ ] ID]RZ SWO VSU]*HQLD ]ZURWQHJR F]VWR QD]\ZDQH
SWODPL ID]RZ\PL 3// DQJ SKDVH ORFNHG ORRS ]QDMGXM EDUG]R
V]HURNLH ]DVWRVRZDQLH ZH ZVSyáF]HVQHM HOHNWURQLFH GR V\QFKURQL]DFML
SRG]LDáXSRZLHODQLD
F]VWRWOLZRFL
SRUHGQLHM
GHPRGXODFML
F]VWRWOLZRFL SU]HPLDQ\ F]VWRWOLZRFL LWS &LJOH URVQF\ REV]DU
OLF]Q\FK L Uy*QRURGQ\FK ]DVWRVRZD SWOL ID]RZHM Z XNáDGDFK
SU]HWZDU]DQLDV\JQDáyZDQDORJRZ\FKLF\IURZ\FKZL*HVL]W\P*H
SDUDPHWU\XNáDGyZ]SWO3//VQDRJyáNRU]\VWQLHMV]HQL*SDUDPHWU\
XNáDGyZNRQZHQFMRQDOQ\FK
8NáDG\ ] SWO 3// Z\WZDU]DQH V Z SRVWDFL RGG]LHOQ\FK
PRQROLW\F]Q\FKXNáDGyZ VFDORQ\FK OXE Z\NRU]\VW\ZDQH V MDNR EORNL
IXQNFMRQDOQH EDUG]LHM ]áR*RQ\FK XNáDGyZ VFDORQ\FK : ]DOH*QRFL RG
URG]DMXLWHFKQLNLSU]HWZDU]DQLDV\JQDáyZUR]Uy*QLDP\SWOHDQDORJRZH
$3// DQJ DQDORJXH SKDVH ORFNHG ORRS L F\IURZH '3// DQJ
GLJLWDOSKDVHORFNHGORRS
3WOD ID]RZD MHVW XNáDGHP VLOQLH QLHOLQLRZ\P VWG MHM DQDOL]D
SR]ZDODQDMF]FLHMQDX]\VNDQLHMHG\QLHZ\QLNyZSU]\EOL*RQ\FKOXEZ
SRVWDFLQXPHU\F]QHM
: ZLNV]RFL SUDNW\F]Q\FK ]DVWRVRZD LQWHUHVXMH QDV SUDFD Z
W]ZVWDQLHV\QFKURQL]DFMLNLHG\WRSU]\VSHáQLHQLXSHZQ\FKZDUXQNyZ
MHM G]LDáDQLH PR*QD RSLVDü PRGHOHP OLQLRZ\P ]QDF]QLH SURVWV]\P GR
DQDOL]\
: QLQLHMV]\P UR]G]LDOH QDV]H UR]ZD*DQLD RJUDQLF]\P\ GR
RPyZLHQLD SRGVWDZRZ\FK ZáDFLZRFL L Z\EUDQ\FK ]DVWRVRZD
DQDORJRZ\FKSWOLID]RZ\FK
=$6$'$'=,$à$1,$02'(/37/,)$=2:(-
3RGVWDZRZ\ VFKHPDW EORNRZ\ SWOL ID]RZHM SU]HGVWDZLRQR QD
U\V
)'3
'HWHNWRU
ID]\
9&2
( )
X W
L
( )
ϕ
L
W
( )
X W
'
( )
X W
2
( )
X W
J
( )
X W
2
( )
ϕ
J
W
[ ]
UDG
[
]
9 UDG
[ ]
9
[ ]
9 9
[ ]
9
[
]
UDG 9
[ ]
UDG
5\V6FKHPDWEORNRZ\XNáDGX]ID]RZSWOVSU]*HQLD]ZURWQHJR
3WOD ID]RZD VNáDGD VL ]DVDGQLF]R ] WU]HFK SRGVWDZRZ\FK
EORNyZ GHWHNWRUD ID]\ ILOWUX GROQRSU]HSXVWRZHJR )'3 L JHQHUDWRUD
SU]HVWUDMDQHJRQDSLFLHP9&2DQJYROWDJHFRQWUROOHGRVFLOODWRU-HVW
WR XNáDG DXWRPDW\F]QHM UHJXODFML NWyUHJR ]DGDQLHP MHVW OHG]HQLH
FKZLORZHM ID]\ V\JQDáX ZHMFLRZHJR
( )
( )
ϕ
ϕ
i
g
t
t
−
SU]H] V\JQDá
( )
u t
g
Z\WZDU]DQ\ZORNDOQ\PJHQHUDWRU]H9&2
9&2 MHVW JHQHUDWRUHP NWyUHJR F]VWRWOLZRü GUJD MHVW
SURSRUFMRQDOQDGRQDSLFLDVWHUXMFHJR
( )
u t
O
'HWHNWRUID]\SRUyZQXMH
ID]\ V\JQDáyZ
( )
u t
i
L
( )
u t
g
D Z Z\QLNX WHJR SRUyZQDQLD Z\WZDU]D
V\JQDáEáGX
( )
u t
D
,
]DOH*Q\RGUy*QLF\ID]3RRGILOWURZDQLX]V\JQDáX
( )
u t
D
QLHSR*GDQ\FK VNáDGRZ\FK SU]H] ILOWU GROQRSU]HSXVWRZ\ L
HZHQWXDOQ\P Z]PRFQLHQLX RWU]\PXMH VL V\JQDá
( )
u t
O
NWyU\ VWHUXMH
9&2 Z WDNL VSRVyE DE\ Uy*QLFD ID] XOHJáD ]PQLHMV]HQLX : ODG ]D
OHG]HQLHP FKZLORZHM ID]\ V\JQDáX ZHMFLRZHJR X]\VNXMH VL WDN*H
OHG]HQLH FKZLORZHM F]VWRWOLZRFL WHJR V\JQDáX SU]H] V\JQDá
( )
u t
g
8NáDG Z\ND]XMH ZáDFLZRFL V\QFKURQL]DFML REX V\JQDáyZ D V\JQDá
ZHMFLRZ\
( )
u t
i
QRVL QD]Z V\JQDáX RGQLHVLHQLD OXE V\JQDáX
V\QFKURQL]XMFHJR 1D U\V ]D]QDF]RQR UyZQLH* MHGQRVWNL
Z\PLDURZH Z NWyU\FK Z\UD*DQH V FKDUDNWHU\VW\NL SU]HMFLRZH
SRV]F]HJyOQ\FKEORNyZRUD]V\JQDá\QDZHMFLXLZ\MFLXW\FKEORNyZ
=Dáy*P\ *H V\JQDá ZHMFLRZ\
( )
u t
i
L V\JQDá Z\WZDU]DQ\ Z
JHQHUDWRU]H9&2VRNUHORQH]DOH*QRFLDPL
( )
( )
[
]
( )
( )
[
]
u t
U
t
t
u t
U
t
t
i
i
i
g
g
g
=
+
=
+
sin
cos
ω
ϕ
ω
ϕ
0
0
JG]LH
( )
( )
ϕ
ϕ
i
g
t
t
L
VID]DPLFKZLORZ\PLND*GHJR]V\JQDáyZ
3XOVDFMHFKZLORZHV\JQDáyZRNUHODM]DOH*QRFL
( )
( )
[ ]
( )
( )
[ ]
ω
ω
ϕ
ω
ω
ϕ
i
i
g
g
t
d
dt
t
t
d
dt
t
=
+
=
+
0
0
-DNRGHWHNWRUID]\]DVWRVXMHP\XNáDGPQR*F\RSLVDQ\ZUR]G]
*G\QDMHJRZHMFLDSRGDP\V\JQDá\RSRVWDFLWRQDMHJRZHMFLX
RWU]\PDP\V\JQDá
( )
u t
D
RSLVDQ\]DOH*QRFL
( )
( ) ( )
( )
( )
[
]
u t
k u t u t
k U U
t
t
D
m
i
g
m
i
g
i
g
=
=
−
+
1
2
sin
ϕ
ϕ
( )
( )
[
]
+
+
+
1
2
2
0
k U U
t
t
m
i
g
i
g
sin
ω
ϕ
ϕ
JG]LH
k
m
MHVWVWDáXNáDGXPQR*FHJR
3LHUZV]\VNáDGQLNZ\UD*HQLDMHVWV\JQDáHPZROQR]PLHQQ\P
QDWRPLDVW GUXJL VNáDGQLN PD ZLGPR VNXSLRQH ZRNyá SXOVDFML
2
0
ω
-H*HOL URO GHWHNWRUD ID]\ SHáQL XNáDG PQR*F\ WR ] V\JQDáX
( )
u t
D
QDOH*\XVXQüQLHSR*GDQ\VNáDGQLNZLHONLHMF]VWRWOLZRFL]DSRPRF
ILOWUXGROQRSU]HSXVWRZHJRRWU]\PXMF
( )
( )
( )
[
]
( )
[
]
( )
X W
N 8 8
W
W
N
W
8
'
P
L
J
L
J
'
E
E
'
E
=
−
=
=
VLQ
VLQ
VLQ
PD[
ϕ
ϕ
ϕ
ϕ
ϕ
OXE
X
'
SU]\F]\P
( )
( )
( )
ϕ
ϕ
ϕ
b
i
g
t
t
t
=
−
MHVWEáGHPID]\
D
N
N 8 8
'
P
L
J
=
VWDQRZLZ]PRFQLHQLHGHWHNWRUDID]\ E
U
D max
PDNV\PDOQDZDUWRüQDSLFLDGHWHNWRUDID]\
5yZQDQLHRSLVXMHFKDUDNWHU\VW\NGHWHNWRUDID]\NWyUDMHVW
IXQNFMVLQXVRLGDOQRRNUHVLH 2
π
DMHMQDFK\OHQLHZSXQNFLH
ϕ
b
=
0
RNUHODZVSyáF]\QQLN
k
D
U\VD
3U]\ ]DáR*HQLX *H ILOWU GROQRSU]HSXVWRZ\ )'3 XVXQLH
QLHSR*GDQHVNáDGRZH]V\JQDáXZ\MFLRZHJRGHWHNWRUDID]\
( )
u t
D
LQLH
EG]LHP\LFKUR]SDWU\ZDüZGDOV]\FKUR]ZD*DQLDFKWRQDSLFLHQDMHJR
Z\MFLXRNUHORQHMHVWVSORWHPIXQNFML
( )
( ) ( )
( )
[
]
( )
( ) (
)
X W
X W K W
N
W K W
N
W K W GW
2
'
'
E
'
W
E
=
∗
=
∗
=
−
∫
VLQ
VLQ
ϕ
ϕ
τ
JG]LH
( )
h t
MHVW RGSRZLHG]L LPSXOVRZ
( )
( )
[ ]
h t
H s
=
−
L
1
ILOWUX
RSLVDQHJRWUDQVPLWDQFM
( )
H s
8
' PD[
X
'
−
8
' PD[
DUFWJ N
'
−
π
ϕ
E
−
π
2
π
π
2
ω
J
ω
0
DUFWJ N
*
X
*
b)
a)
5\V D &KDUDNWHU\VW\ND SU]HMFLRZD GHWHNWRUD ID]\ E FKDUDNWHU\VW\ND
SU]HVWUDMDQLDJHQHUDWRUD9&2
-DNSRND]DQRQDU\VESXOVDFMDJHQHUDWRUD9&2SRZLQQDE\ü
OLQLRZ IXQNFM QDSLFLD VWHUXMFHJR
( )
u t
O
Z FDá\P ]DNUHVLH
F]VWRWOLZRFLSUDF\
=DWHP
( )
( )
ω
ω
g
G
O
t
k u t
=
+
0
=SRUyZQDQLD]DOH*QRFLLRWU]\PXMHP\
( )
( )
d
t
dt
k u t
g
G
O
ϕ
=
6\JQDá
( )
u t
O
PRGXOXMHF]VWRWOLZRüGUJDJHQHUDWRUD9&2SU]\
F]\PQDSRGVWDZLHUyZQDDRWU]\PXMHP\
( )
( )
( )
[
]
( )
{
}
d
t
dt
k k
t
t
h t
g
G
D
i
g
ϕ
ϕ
ϕ
=
−
∗
sin
3RGVWDZLDMF
K
k k
G
D
=
SU]\ F]\P
K
MHVW Z]PRFQLHQLHP SWOL
[
]
VHF RWU]\PXMHP\RVWDWHF]QHUyZQDQLHRSLVXMFH]ZL]HNSRPLG]\
ID]V\JQDáXZHMFLRZHJRLID]JHQHUDWRUD9&2
( )
( )
( )
[
]
( )
{
}
d
t
dt
K
t
t
h t
g
i
g
ϕ
ϕ
ϕ
=
−
∗
=
sin
( )
( )
(
)
=
−
−
∫
K
t
t h t
d
t
i
g
sin [
]
0
ϕ
ϕ
τ τ
,QQ SRVWDü WHJR UyZQDQLD PR*HP\ RWU]\PDü QD SRGVWDZLH ]DOH*QRFL
DL
( )
( )
{
}
d
t
dt
d
t
dt
K
t
h t
b
i
b
ϕ
ϕ
ϕ
=
−
∗
=
( )
sin
( )
( )
(
)
=
−
−
∫
d
t
dt
K
t h t
d
i
t
b
ϕ
ϕ
τ τ
( )
sin
0
3WOD 3// RSLVDQD UyZQDQLDPL MHVW XNáDGHP VLOQLH
QLHOLQLRZ\P ] SRZRGX QLHOLQLRZRFL FKDUDNWHU\VW\NL SU]HMFLRZHM
GHWHNWRUD ID]\ 1DFK\OHQLH FKDUDNWHU\VW\NL SU]HM FLRZHM
( )
u
D
b
ϕ
GHWHNWRUDID]\ZSU]\SDGNX]DVWRVRZDQLDXNáDGXPQR *FHJRXOHJDQLH
W\ONR ]QDF]Q\P ]PLDQRP FR GR ZDUWRFL OHF] UyZQLH* ]PLHQLD VZyM
]QDNSU]\]PLDQLHEáGXID]\RG
ϕ
ϕ
b
b
= − ∞
= + ∞
GR
U\VD3U]\
]PLDQDFK EáGX ID]\ Z SU]HG]LDáDFK
ϕ
π
π
π
E
Q
= −
+
±
GR
GODQ
=
QDFK\OHQLH FKDUDNWHU\VW\NL MHVW GRGDWQLH L Z W\P
SU]\SDGNX Z SWOL Z\VWSXMH ID]RZH XMHPQH VSU]*HQLH ]ZURWQH 'OD
SR]RVWDá\FK
ϕ
b
QDFK\OHQLH FKDUDNWHU\VW\NL SU]HMFLRZHM GHWHNWRUD MHVW
XMHPQHLZSWOLZ\VWSXMHID]RZHGRGDWQLHVSU]*HQLH]ZURWQH
37/$:67$1,(6<1&+521,=$&-,
/LQLRZ\PRGHOSWOLID]RZHM
3WOD]QDMGXMHVLZVWDQLHV\QFKURQL]DFMLJG\
( )
( )
ω
ω
i
g
t
t
=
1DSRGVWDZLH]DOH*QRFLLPR*HP\VWZLHUG]Lü *HZVWDQLH
V\QFKURQL]DFML
( )
( )
ϕ
ϕ
ϕ
i
g
t
t
const
−
=
E
:VWDQLHV\QFKURQL]DFML
ϕ
π
b0
2
≤
FRR]QDF]D*HSXQNWSUDF\GHWHNWRUD
ID]\ OH*\ Z SRGVWDZRZ\P SU]HG]LDOH MHJR FKDUDNWHU\VW\NL Z NWyU\P
MHVWRQDPRQRWRQLF]QDàDWZRPR*HP\Z\]QDF]\ü]DNUHVSU]HVWUDMDQLD
ORNDOQHJRJHQHUDWRUDSWOLZRNyáVZHMSXOVDFMLVSRF]\QNRZHM
ω
0
SU]H]
V\JQDá
( )
u t
O
'ODKDUPRQLF]QHJRV\JQDáXZHMFLRZHJR
( )
u t
i
RVWDáHMSXOVDFML
( )
u t
const
i
i
=
=
ω
QD Z\MFLX GHWHNWRUD ID]\ UyZQ RWU]\PXMHP\ VNáDGRZ VWDá
QDSLFLD
( )
U
u t
k U U
k
D
D
m
s
g
b
D
b
0
0
0
1
2
=
=
=
sin
sin
ϕ
ϕ
3U]\
− ≤
≤
π ϕ π
2
2
0
b
QDSLFLHWR]DZLHUDVLZJUDQLFDFK
−
≤
≤
k
U
k
D
D
D
0
6NáDGRZDVWDáD
U
D0
SRSU]HQLHVLHQLXSU]H]ILOWUSU]\MPXMHZDUWRü
( )
H
U
D
0
0
L SR HZHQWXDOQ\P Z]PRFQLHQLX
( )
(
)
H 0
1
>
VWHUXMH
JHQHUDWRUHP 9&2 1DMF]FLHM Z]PRFQLHQLH QLH MHVW SRWU]HEQH WM
( )
H 0
1
=
=JRGQLH]]DOH*QRFLSXOVDFMDJHQHUDWRUD9&2PR*HSU]\MPRZDü
ZDUWRFL]SU]HG]LDáX
( )
( )
ω
ω
ω
0
0
0
0
−
≤
≤
+
k k H
k k H
G
D
g
G
D
-H*HOL]DNUHV]PLDQSXOVDFMLV\JQDáXZHMFLRZHJR
( )
u t
i
EG]LHVL
XWU]\P\ZDü Z SU]HG]LDOH RNUHORQ\P Z\UD*HQLHP WR ZyZF]DV
SWODID]RZDSR]RVWDMHZVWDQLHV\QFKURQL]DFML
7HQZáDQLHSU]HG]LDáSXOVDFMLV\JQDáXZHMFLRZHJRGODNWyU\FK
SWOD ID]RZD SR]RVWDMH Z VWDQLH V\QFKURQL]DFML QRVL QD]Z ]DNUHVX
WU]\PDQLD DQJ KROG LQ UDQJH OXE ]DNUHVX OHG]HQLD DQJ WUDFNLQJ
UDQJHWHMSWOL
: UR]ZD*DQ\P SU]\SDGNX ]DNUHV WU]\PDQLD MHVW V\PHWU\F]Q\
Z]JOGHPSXOVDFML
ω
0
LZ\QRVL
( )
∆
ω
T
G
D
k k H
K
=
=
0
SU]\F]\PQDMF]FLHM
( )
H 0
1
=
: VWDQLH V\QFKURQL]DFML EáG ID]\
ϕ
b0
MHVW PDá\ L PR*HP\
]DáR*\ü *H
E
ϕ
π
3U]\ W\P ]DáR*HQLX FKDUDNWHU\VW\ND
GHWHNWRUDID]\PR*HE\üDSURNV\PRZDQD]DOH*QRFLOLQLRZ
(
) (
)
U
k
k
k
D
D
i
g
D
i
g
D
b
0
0
=
−
≈
−
=
sin
ϕ ϕ
ϕ
ϕ
ϕ
3RGVWDZLDMF]DOH*QRüGRUyZQDLRWU]\PXMHP\
( )
( )
( )
[
]
( )
( )
( )
( )
[
]
( )
G
W
GW
.
W
W K W
G
W
GW
G W
GW
.
W K W
J
L
J
E
L
E
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
=
−
∗
=
−
∗
5yZQDQLD V OLQLRZH ]DWHP VWRVXMF SU]HNV]WDáFHQLH /DSODFH¶D
RWU]\PXMHP\UyZQDQLDDOJHEUDLF]QHZSRVWDFL
( )
( )
( )
[
]
( )
( )
( )
( ) ( )
V
V
.
V
V + V
V
V
V V
.
V + V
J
L
J
E
L
E
φ
φ
φ
φ
φ
φ
=
−
=
−
JG]LH
( ) ( ) ( ) ( )
φ
φ
φ
g
i
b
s
s
s
H s
,
,
,
V WUDQVIRUPDWDPL /DSODFH¶D Z\UD*H
( ) ( ) ( )
( )
( )
ϕ
ϕ
ϕ
J
L
E
W
W
W
K W
+ V
RUD]
D
MHVWWUDQVPLWDQFMILOWUX)'3
1D SRGVWDZLH UyZQD PR*HP\ Z\]QDF]\ü WUDQVPLWDQFM
]DPNQLWHMSWOLID]RZHM
( )
( )
( )
( )
( )
G s
s
s
K H s
s
K H s
g
i
=
=
+
φ
φ
ZNWyUHM
( )
φ
i
s
MHVWZ\PXV]HQLHP]D
( )
φ
g
s
RGSRZLHG]LXNáDGX
3RGREQLHPR*HP\Z\]QDF]\üWUDQVPLWDQFMRGQLHVLRQGREáGX
ID]\
( )
φ
b
s
( )
( )
( )
( )
( )
G s
s
s
G s
s
s
K H s
b
b
i
=
= −
=
+
φ
φ
1
1D SRGVWDZLH UyZQDQLD PR*HP\ Z\]QDF]\ü WUDQVPLWDQFM
VDPHJRJHQHUDWRUD9&2
( )
( )
φ
g
O
G
s
U
s
k
s
=
F]\OLJHQHUDWRU9&2]DFKRZXMHVLMDNXNáDGFDáNXMF\
= SU]HSURZDG]RQHM DQDOL]\ Z\QLND *H Z VWDQLH V\QFKURQL]DFML
SU]\
_ _
E
ϕ
π
VFKHPDW EORNRZ\ SWOL PR*H E\ü ]DVWSLRQ\
PRGHOHPOLQLRZ\PSU]HGVWDZLRQ\PQDU\V
( )
+ V
N
'
N
*
( )
φ
L
V
( )
8 V
'
( )
8 V
2
( )
φ
J
V
( )
8 V
2
[
]
9 UDG
[ ]
9 9
[
]
UDG 9V
( )
φ
E
V
)D]D
1
V
3XOVDFMD
( )
Ω
J
V
( )
Ω
J
V
+
−
( )
φ
J
V
9&2
)LOWU
'HWHNWRU ID]\
5\V/LQLRZ\PRGHOSWOLID]RZHMZVWDQLHV\QFKURQL]DFML
1DSRGVWDZLHVFKHPDWXEORNRZHJR] U\VPR*HP\Z\]QDF]\ü
WUDQVPLWDQFMSWOLRWZDUWHM
( )
( )
( )
( )
( )
G s
s
s
k k
H s
s
K
H s
s
O
g
i
O
D
G
=
=
=
φ
φ
JG]LH.MDNR]QDF]RQRZF]HQLHMMHVWZ]PRFQLHQLHPSWOL
= ]DOH*QRFL L PR*QD ]DXZD*\ü *H
k
G
Z\UD*D VL Z
UDG
9 VHF
N
'
Z 9
UDG
VWGZ]PRFQLHQLHSWOLPDZ\PLDU
1
sec
:áDFLZRFLSWOLZLVWRWQ\VSRVyE]DOH*RGWUDQVPLWDQFML
( )
H s
ILOWUX GODWHJR QL*HM UR]SDWU]\P\ NLOND SU]\NáDGyZ NWyUH PDM
QDMZLNV]H]QDF]HQLHSUDNW\F]QH
:Sá\ZWUDQVPLWDQFMLILOWUXQDZáDFLZRFLOHG]FHSWOL
:áDFLZRFLOHG]FHSWOLID]RZHMZTXDVLOLQLRZ\P]DNUHVLHMHM
SUDF\ Z LVWRWQ\ VSRVyE ]DOH* RG WUDQVPLWDQFML ]DVWRVRZDQHJR ILOWUX
GROQRSU]HSXVWRZHJR:\Uy*QLDVLSU]\W\PNLONDQDMEDUG]LHMW\SRZ\FK
XNáDGyZ ILOWUyZ GROQRSU]HSXVWRZ\FK SLHUZV]HJR U] GX NWyUH V
QDMF]FLHMVWRVRZDQHZSWODFKID]RZ\FK3//-DNZ\QLND]]DOH*QRFL
]DVWRVRZDQLHILOWUXJRU]GXSRZRGXMH*HWUDQVPLWDQFMDSWOLZ
]DNUHVLH TXDVLOLQLRZ\P MHVW JR U]GX : OLWHUDWXU]H SWOH ID]RZH
NODV\ILNXMH VL MDN XNáDG\ DXWRPDW\F]QHM UHJXODFML Z RSDUFLX R
WUDQVPLWDQFMH SWOL RWZDUWHM UyZQ SU]\ F]\P OLF]ED ELHJXQyZ
( )
G s
O
RNUHODU]GSWOLQDWRPLDVWOLF]EDELHJXQyZZSRF]WNXXNáDGX
ZVSyáU]GQ\FKRNUHODW\SSWOL
1DMF]FLHMUR]ZD*DVLSWOHID]RZHJRU]GXEH]ILOWUXRUD]
SWOH JR U]GX ] W\SRZ\PL SDV\ZQ\PL OXE DNW\ZQ\PL ILOWUDPL JR
U]GX 'RNRQXMF WHM NODV\ILNDFML SRGREQLH MDN Z >@ QL*HM
SU]HGVWDZLRQR QDMEDUG]LHM W\SRZH WUDQVPLWDQFMH VWRVRZDQ\FK ILOWUyZ
( )
H s
L ZL*FH VL ] QLPL ]JRGQLH ] UyZQ WUDQVPLWDQFMH SWOL
( )
G s
3WODSLHUZV]HJRU]GXW\SXSLHUZV]HJR
( )
H s
0
1
=
D
( )
G s
K
s
K
=
+
E
3WOD GUXJLHJR U]GX W\SX SLHUZV]HJR ] SDV\ZQ\P ILOWUHP
FDáNXMF\PRVWUXNWXU]H
5
1
&
( )
( )
H s
H s
s
=
=
+
1
1
1
1
τ
JG]LH
τ
1
1
=
R C
( )
G s
K
s
s
K
=
+
+
−
−
−
τ
τ
τ
1
1
2
1
1
1
1
3WOD GUXJLHJR U]GX W\SX SLHUZV]HJR ] SDV\ZQ\P ILOWUHP
SURSRUFMRQDOQRFDáNXMF\PRVWUXNWXU]H
5
1
5
2
&
( )
( )
H s
H s
s
s
=
=
+
+
+
2
2
1
2
1
1
τ
τ
τ
(
)
JG]LH
τ
τ
1
1
2
2
=
=
R C
R C
( )
G s
K
s
s
K
s
K
=
+
+
+ +
+
+
+
−
(
) (
)
1
1
2
1
2
1
2
2
1
2
1
2
τ
τ τ
τ
τ
τ
τ
τ
7UDQVPLWDQFMD
( )
G s
RNUHORQD ]DOH*QRFL PR*H E\ü
Z\UD*RQDZGRJRGQLHMV]HMXQRUPRZDQHMSRVWDFL
( )
G s
K
s
s
s
n
n
n
n
n
=
−
+
+
+
ω
ξ ω
ω
ξ ω
ω
2
2
2
2
2
D
JG]LH
ω
τ
τ
n
K
=
+
1
2
1 2
/
MHVWSXOVDFMGUJDVZRERGQ\FKSWOL E
ξ
τ τ
τ
=
+
+
1
2
1
1
2
1 2
2
K
K
K
/
MHVWZVSyáF]\QQLNLHPWáXPLHQLD F
3WOD GUXJLHJR U]GX W\SX GUXJLHJR ] DNW\ZQ\P ILOWUHP
SURSRUFMRQDOQRFDáNXMF\PRVWUXNWXU]H
5
1
5
2
&
−
+
( )
( )
H s
H s
s
s
=
= +
3
2
1
1
τ
τ
JG]LH
τ
τ
1
1
2
2
=
=
R C
R C
( )
(
)
G s
K
s
s
K
s
K
=
+
+
+
−
1
2
1
1
2
2
1
1
τ
τ
τ
τ
τ
OXEZSRVWDFLXQRUPRZDQHM
( )
G s
s
s
s
n
n
n
n
=
+
+
+
2
2
2
2
2
ξ ω
ω
ξ ω
ω
D
JG]LH
ω
τ
n
K
=
1
1 2
/
E
ξ τ
τ
=
2
1
1 2
2
K
/
F
: ]DVDG]LH Z\VWDUF]\ UR]ZD*Dü WUDQVPLWDQFMH ILOWUyZ R SRVWDFL
( )
H s
2
UyZQ OXE
( )
H s
3
UyZQ ERZLHP SU]\ LFK SRPRF\ PR*QD
RSLVDü WUDQVNRQGXNWDQFMH GRZROQHJR ILOWUX JR U]GX 3U]\NáDGRZR
ILOWURWUDQVPLWDQFML
( )
H s
1
UyZQ MHVW V]F]HJyOQ\P SU]\SDGNLHP
ILOWUXRWUDQVPLWDQFML
( )
H s
2
UyZQGOD
τ
2
0
=
.
3RGREQLHDNW\ZQ\ILOWUFDáNXMF\]UHDOL]RZDQ\QDZ]PDFQLDF]X
RSHUDF\MQ\PLSRVLDGDMF\WUDQVPLWDQFM
( )
H s
s
4
1
1
=
τ
MHVWV]F]HJyOQ\PSU]\SDGNLHPILOWUXRWUDQVPLWDQFML
( )
H s
3
UyZQ
GOD
τ
2
0
=
%DGDMF UR]NáDG ]HU L ELHJXQyZ WUDQVPLWDQFML SWOL
( )
G s
GOD
Uy*Q\FK ILOWUyZ PR*HP\ RNUHOLü FKDUDNWHU RGSRZLHG]L XNáDGX SU]\
VNRNRZ\FK ]PLDQDFK ID]\ V\JQDáX ZHMFLRZHJR 2GSRZLHG( WD Z
LVWRWQ\ VSRVyE ]DOH*\ RG ZVSyáF]\QQLND WáXPLHQLD
ξ
RUD] RG SXOVDFML
GUJD VZRERGQ\FK
ω
n
L PR*H E\ü RVF\ODF\MQD DSHULRG\F]QR
NU\W\F]QDOXEDSHULRG\F]QD
&KDUDNWHU\VW\ND DPSOLWXGRZR F]VWRWOLZRFLRZD SWOL ID]RZHM
JR U]GX MHVW WDND MDN GROQRSU]HSXVWRZHM WUDQVPLWDQFML
MHGQRELHJXQRZHM SU]\ F]\P Z]PRFQLHQLH S WOL
.
MHVW ]DUD]HP
V]HURNRFL SDVPD SWOL 3RQLHZD* Z]PRFQLHQLH SWOL EH]SRUHGQLR
ZSá\ZD QD ]DNUHV WU]\PDQLD
(
)
∆
ω
T
SWOL GODWHJR WD ZVSyá]DOH*QRü
V]HURNRFLSDVPDSWOLL]DNUHVXWU]\PDQLDSRZRGXMH*HSWODID]RZD
JRU]GXMHVWEDUG]RU]DGNRVWRVRZDQDZSUDNW\FH
'OD ZV]\VWNLFK UR]ZD*DQ\FK WUDQVPLWDQFML ILOWUyZ WM
( )
( )
H s
H s
0
4
−
SWOD MHVW VWDELOQD >@ FKRFLD* Z SUDNW\FH PR*H VL
]GDU]\ü*HQLHXZ]JOGQLRQHZWUDQVPLWDQFMLSWOLELHJXQ\SDVR*\WQLF]H
RGVXQLWH RG ELHJXQyZ GRPLQXMF\FK Z NLHUXQNX ZLHONLFK
F]VWRWOLZRFL ZQRV] GRGDWNRZH SU]HVXQLFLD ID]\ SURZDG]FH GR
QLHVWDELOQRFL XNáDGX 0DUJLQHV\ VWDELOQRFL SWOL Z TXDVLOLQLRZ\P
]DNUHVLH SUDF\ GOD Uy*Q\FK WUDQVPLWDQFML ILOWUyZ PRJ E\ü áDWZR
Z\]QDF]RQHZRSDUFLXRWUDQVPLWDQFMHSWOLRWZDUW\FKUyZQ
1D U\V SU]HGVWDZLRQR FKDUDNWHU\VW\NL F]VWRWOLZRFLRZH
DPSOLWXGRZH L ID]RZH SWOL RWZDUW\FK GOD WU]HFK WUDQVPLWDQFML ILOWUyZ
( )
H s
0
( )
H s
1
( )
H s
2
3XOVDFMD
ω
C
SU]\NWyUHMPRGXáWUDQVPLWDQFMLSWOLRWZDUWHMRVLJD
ZDUWRü UyZQ
(
)
(
)
G
j
O
C
ω
=
1
QD]\ZD VL SXOVDFM RGFLFLD DQJ
FURVVRYHUIUHTXHQF\
7UDQVPLWDQFMD
( )
G j
0
ω
SWOL GUXJLHJR U]GX W\SX SLHUZV]HJR ]
SDV\ZQ\P ILOWUHP FDáNXMF\P NWyUHJR SXOVDFMD
ω
1
MHVW ]QDF]QLH
PQLHMV]DRG
.
DE\RVLJQüZVNLHSDVPRSRZRGXMH*HSU]HVXQLFLH
ID]\ SWOL MHVW EOLVNLH
−
π
SU]\ SXOVDFML RGFLFLD
ω
c
U\VE
:\QLNLHPWHJRPR*HE\üQLHVWDELOQRüSWOL]DPNQLWHM
=DVWRVRZDQLHILOWUXRWUDQVPLWDQFMLMHGQRELHJXQRZHM]]HUHPXPR *OLZLD
]ZLNV]HQLHPDUJLQHVXID]\MDNSRND]XMHU\VF=DXZD *P\*HGOD
WHJR SU]\SDGNX V]HURNRü SDVPD SWOL NWyUD MHVW UyZQD SXOVDFML
RGFLFLD PR*H E\ü ]QDF]QLH PQLHMV]D RG
.
0R*OLZRü QLH]DOH*QHM
UHJXODFML V]HURNRFL SDVPD SWOL RUD] Z]PRFQLHQLD SWOL
.
MHVW ]DOHW
VWRVRZDQLDWHJRW\SXILOWUyZ
: VWDQLH V\QFKURQL]DFML SWOD OHG]L ]PLDQ\ F]VWRWOLZRFL
V\JQDáX ZHMFLRZHJR 3U]\NáDGRZR MH*HOL V\JQDáHP W\P MHVW V\JQDá
]PRGXORZDQ\ F]VWRWOLZRFLRZR )0 WR QDSLFLH
( )
u t
O
NWyUH MHVW
QDSLFLHP ZHMFLRZ\P JHQHUDWRUD 9&2 MHVW SU]HELHJLHP
RGZ]RURZXMF\P ]PLDQ\ F]VWRWOLZRFL V\JQDáX ZHMFLRZHJR F]\OL
Z\VWSXMHSURFHVGHPRGXODFML)0
=Dáy*P\*HZVWDQLHSRF]WNRZ\PJG\SWOD3//MHVWZVWDQLH
V\QFKURQL]DFML QDVWSXMH ]DEXU]HQLH Z V\JQDOH ZHMFLRZ\P NWyUH
Z\ZRáXMHSURFHVSU]HMFLRZ\=DEXU]HQLHWRMHVWQDW\OHPDáH *HQDGDO
RERZL]XMHPRGHOOLQLRZ\SWOL1DU\VSU]HGVWDZLRQRSU]\NáDGRZR
SU]HELHJL F]DVRZH QDSLFLD QD ZHMFLX JHQHUDWRUD 9&2
( )
u t
O
SWOL
ID]RZHM SLHUZV]HJR U]GX
( )
(
)
H s
0
1
=
QD VLQXVRLGDOQ\ V\JQDá
ZHMFLRZ\ZNWyU\PQDVWSLáR]DEXU]HQLHZSRVWDFLVNRNRZHM]PLDQ\
F]VWRWOLZRFL
ω
F
.
=
( )
* M
2
ω
−
π
−
π
2
a)
( )
DUJ * M
2
ω
1
0
ω
F
( )
* M
2
ω
−
π
2
b)
( )
DUJ * M
2
ω
1
0
ω
1
.
−
20
G% GHN
−
20
G% GHN
−
40
G% GHN
ω
1
<<
.
∆
ϕ ≈
0
( )
+ V
0
1
=
ω
1
1
1
=
5 &
ω
F
0
ω
1
.
−
20
G% GHN
−
40
G% GHN
∆
ϕ
π
≈ −
2
−
20
G% GHN
−
π
2
−
π
1
( )
* M
2
ω
( )
DUJ * M
2
ω
ω
2
( )
+ V
V
V
2
2
1
1
1
= +
+
ω
ω
(
)
ω
1
1
2
1
=
+
5 5 &
( )
+ V
V
1
1
1
1
=
+
ω
ω
2
2
1
=
5 &
c)
5
1
5
2
&
5
1
&
ZSá\Z F]áRQX
FDáNXMFHJR 9&2
ω
ω
ω
ω
ω
ω
5\V &KDUDNWHU\VW\NL F]VWRWOLZRFLRZH DPSOLWXGRZH L ID]RZH RWZDUW\FK SWOL
ID]RZ\FKGODUy*Q\FKWUDQVPLWDQFMLILOWUXD
( )
+ V
E
( )
+ V
F
( )
+ V
3U]HELHJ QDSLFLD
( )
u t
O
QD U\V ]RVWDá Z\]QDF]RQ\ GOD SWOL
SLHUZV]HJRU]GXRSDUDPHWUDFK
[ ] [ ]
N
UDG
N+]
9
*
=
π
[ ]
.
V
I
=
=
=
ω
π
+]
(
)
ω
π
L
+]
=
2
250
(
)
ω
π
L
N+]
=
2
1
(
)
ω
π
L
N+]
=
2
1
(
)
ω
π
L
+]
=
2
500
X W
L
X W
2
0 5
−
0 5
−
0 25
0 25
0
W
W
τ
=
=
1
2
N
PV
8
N
9
2
L
*
1
0
0 5
=
−
=
ω ω
8
N
9
2
L
*
2
0
0 25
=
−
= −
ω ω
5\V 2GSRZLHG( SWOL ID]RZHM SLHUZV]HJR U]GX QD VLQXVRLGDOQ\ V\JQDá
ZHMFLRZ\]HVNRNRZ]PLDQF]VWRWOLZRFL
6WDá F]DVRZ ]PLDQ QDSLFLD QD ZHMFLX JHQHUDWRUD 9&2
PR*HP\Z\]QDF]\üQDSRGVWDZLHWUDQVPLWDQFML
( )
( )
U
s
s
k
K
s
K
O
i
G
Ω
=
+
1
VWG
τ
=
=
.
PVHF
=PLDQ\SXOVDFMLJHQHUDWRUD9&2RSLVXMH]DOH*QRü
ω
ω
g
G
O
k u
=
+
0
=DWHP SU]\ VNRNRZHM ]PLDQLH F]VWRWOLZRFL V\JQDáX ZHMFLRZHJR ]
+] GR N+] QDSLFLH QD ZHMFLX JHQHUDWRUD 9&2 ]PLHQLD VL
Z\NáDGQLF]R]HVWDáF]DVRZ
τ
RGZDUWRFLGR
U
O1
8
N
2
L
*
=
−
=
−
≈
ω ω
π
π
π
9
3U]\VNRNRZHM]PLDQLHF]VWRWOLZRFL
f
i
RGZDUWRFLN+]GRZDUWRFL
+] QDSLFLH VWHUXMFH JHQHUDWRUHP 9&2 Z\NáDGQLF]R ]PLHQLD VL
GRZDUWRFL
U
O2
8
N
2
L
*
=
−
=
−
= −
ω ω
π
π
π
9
=GROQRüOHG]HQLDSU]H]SWO]PLDQID]\V\JQDáX ZHMFLRZHJR
RNUHODVL]Z\NOHGODVWDQGDUGRZ\FK]DEXU]HWHJRV\JQDáXRSRVWDFL
VNRNRZHM]PLDQ\ID]\
VNRNRZHM]PLDQ\F]VWRWOLZRFL
OLQLRZHM]PLDQ\F]VWRWOLZRFL
3U]\MPXMF *H ]DEXU]HQLH V\JQDáX ZHMFLRZHJR QDVWSLáR Z FKZLOL
t
=
0
Z\PLHQLRQH WU]\ V\JQDá\ VWDQGDUGRZH L LFK WUDQVIRUPDW\
/DSODFH¶DSU]HGVWDZLRQRZWDEHOL
=GROQRüOHG]HQLDSU]H]SWO]PLDQID]\V\JQDáX ZHMFLRZHJR
Z\]QDF]\P\ Z RSDUFLX R UyZQDQLH RNUHODMFH WUDQVPLWDQFM
SWOLRGQLHVLRQGREáGXID]\
( )
( ) ( )
φ
φ
b
i
s
s
s
K H s
s
=
+
:\NRU]\VWXMFUyZQDQLHPR*HP\Z\]QDF]\ü
( )
φ
b
s
DW\P
VDP\P
( )
ϕ
b
t
GOD Z\EUDQHM WUDQVPLWDQFML ILOWUX ]DVWRVRZDQHJR Z S WOL
RUD]GODND*GHJR]SRGDQ\FKZWDEHOLSREXG]H
5R]ZL]DQLH UyZQDQLD PR*QD GRNRQDü GREU]H ]QDQ\PL
PHWRGDPL : QDV]\FK UR]ZD*DQLDFK RJUDQLF]\P\ VL MHG\QLH GR
Z\]QDF]HQLD ZDUWRFL DV\PSWRW\F]Q\FK UR]ZL]D V]F]HJyáRZ\FK GOD
t
→ ∞
7$%(/$
:G]LHG]LQLHF]DVX /WUDQVIRUPDWD
6NRNRZD]PLDQDID]\
( )
( )
ϕ
ϕ
i
t
t
= ∆
1
( )
φ
ϕ
i
s
s
=
∆
6NRNRZD]PLDQDSXOVDFML
( )
( )
ϕ
ω
i
t
t
t
= ∆
1
( )
φ
ω
i
s
s
= ∆
2
/LQLRZD]PLDQDSXOVDFML
( )
( )
ϕ
υ
ω
i
t
t
t
=
1
2
1
2
( )
φ
υ
ω
i
s
s
=
3
:\NRU]\VWXMF WZLHUG]HQLH R ZDUWRFL JUDQLF]QHM Z RGQLHVLHQLX
GRUyZQDQLDRWU]\PXMHP\
( )
( )
( ) ( )
lim
lim
lim
t
b
b
s
b
s
i
t
s
s
s
s
K H s
s
→∞
→
→
=
=
=
+
ϕ
ϕ
φ
φ
0
0
0
2
D6NRNRZD]PLDQDID]\
( )
( )
lim
lim
t
b
b
s
t
s
s
K H s
→∞
→
=
=
+
=
ϕ
ϕ
ϕ
0
0
0
∆
=UyZQDQLDZ\QLND *HSWODMHVWZVWDQLH OHG]LüND*G]PLDQ
ID]\
∆
ϕ
PXVLE\üPDáHDE\PR*QDVWRVRZDüPRGHOOLQLRZ\SWOLMHOL
W\ONR
( )
H 0
0
≠
.
:W\PSU]\SDGNXEáGID]\ZVWDQLHXVWDORQ\PRVLJD
ZDUWRü]HURZ
E6NRNRZD]PLDQDSXOVDFML
( )
( )
( )
lim
lim
t
b
b
s
t
s
K H s
K H
→∞
→
=
=
+
=
ϕ
ϕ
ω
ω
0
0
0
∆
∆
$V\PSWRW\F]QDZDUWRüEáGXID]\]DOH*\RGURG]DMX]DVWRVRZDQHJRZ
SWOLILOWUX'ODILOWUyZRWUDQVPLWDQFMDFK
( )
H s
0
L
( )
H s
1
PDP\
( )
H 0
1
=
]DWHP
( )
lim
t
b
b
t
K
→∞
=
=
ϕ
ϕ
ω
0
∆
: W\P SU]\SDGNX ZDUWRü EáGX ID]\ Z VWDQLH XVWDORQ\P ]DOH*\ RG
Z]PRFQLHQLD SWOL RUD] RG SRF]WNRZHM Uy*QLF\ SXOVDFML V\JQDáyZ
( )
( )
u t
u t
i
g
L
'ODILOWUXRWUDQVPLWDQFML
( )
H s
3
DV\PSWRW\F]QDZDUWRüEáGX
ϕ
b0
0
=
SRQLHZD*
( )
H s
3
= ∞
SU]\ s
→
0
F/LQLRZD]PLDQDSXOVDFML
'ODILOWUyZRWUDQVPLWDQFMDFK
( )
( )
( )
H s
H s
H s
0
1
2
,
,
WMWDNLFKGOD
NWyU\FK
( )
K H 0
PDZDUWRüVNRF]RQ
( )
( )
lim
lim
t
b
s
t
s s
K H s
→∞
→
=
+
= ∞
ϕ
υ
ω
0
1
%áGID]\QDUDVWDQLHRJUDQLF]HQLH]V]\ENRFL
( )
( )
[
]
( )
lim
lim
lim
t
b
s
b
s
d
t
dt
s s
s
s
s
s
K H s
s
K
→∞
→
→
=
=
+
=
ϕ
υ
υ
ω
ω
0
0
2
3
Φ
%áG ID]\ QDUDVWD Z PLDU XSá\ZX F]DVX SRZRGXMF Z\MFLH
GHWHNWRUDID]\]OLQLRZHJRREV]DUXSUDF\D *SU]\SHZQHMZDUWRFLEáGX
ID]\QDVWSXMHXWUDWDV\QFKURQL]DFML
'ODSWOL]ILOWUHPRWUDQVPLWDQFML
( )
H s
3
( )
( )
( )
lim
lim
t
b
b
s
t
t
s
s
s
K H s
s
→∞
→
=
=
+
ϕ
ϕ
υ
ω
0
0
3
3
3RGVWDZLDMFLEGRRWU]\PXMHP\
ϕ
υ
ξ ω
ω
υ
ω
ω
ω
b
s
n
n
n
s
s
0
0
2
2
2
2
2
=
+
+
=
→
lim
'OD Z\VWDUF]DMFR GX*HJR ZVSyáF]\QQLND WáXPLHQLD
ξ
SU]HELHJ
( )
ϕ
b
t
RVLJD ZDUWRü DV\PSWRW\F]Q Z VSRVyE DSHULRG\F]Q\ WM EH]
RVF\ODFML R GX*\FK DPSOLWXGDFK L SU]\ GRVWDWHF]QLH PDá\P VWRVXQNX
υ ω
ω
/
n
2
SWODSR]RVWDMHZVWDQLHV\QFKURQL]DFML
-H*HOL ]DVWRVXMHP\ ILOWU R WUDQVPLWDQFML
( )
( ) ( )
H s
H s H s
5
3
4
=
UyZQZyZF]DVRWU]\PXMHP\SWOID]RZJRU]GXW\SX
WU]HFLHJR NWyUHM EáG ID]\ SU]\ OLQLRZHM ]PLDQLH SXOVDFML V\JQDáX
ZHMFLRZHJRZTXDVLOLQLRZ\P]DNUHVLHSUDF\Z\QRVL]HUR
0LQLPDOL]DFMDEáGXOHG]HQLDID]\ZVWDQLHV\QFKURQL]DFMLSU]\
]PLDQDFK F]VWRWOLZRFL ZHMFLRZHM QLH VWDQRZL MHG\QHJR NU\WHULXP
GRERUX Z]PRFQLHQLD SWOL L WUDQVPLWDQFML ILOWUX GROQRSU]HSXVWRZHJR
=DUyZQRZ]PRFQLHQLHSWOLMDNLWUDQVPLWDQFMDILOWUXZLVWRWQ\VSRVyE
ZSá\ZDM UyZQLH* QD ZáDFLZRFL V]XPRZH SWOL FKDUDNWHU\]RZDQH
W]ZSDVPHPV]XPRZ\P
B
n
>@
( )
( )
B
j
j
df
n
g
i
=
∞
∫
ϕ
ϕ
Ω
Ω
2
0
1DOH*\ SU]\ W\P SRGNUHOLü *H XNáDG\ ] SWODPL ID]RZ\PL
Z\ND]XM EDUG]R NRU]\VWQH ZáDFLZRFL ]PQLHMV]DQLD VWRVXQNX
V\JQDáV]XPQDZ\MFLXXNáDGXZSRUyZQDQLXGRZHMFLD'ODSWOL3//
JRRUD]JRU]GX]ILOWUHPFDáNXMF\P
( )
(
)
H s
1
SDVPRV]XPRZH
B
n
]DOH*\ W\ONR RG Z]PRFQLHQLD SWOL L Z\QRVL
B
K
n
=
/ 4
:]URVW
Z]PRFQLHQLD ] MHGQHM VWURQ\ ]PQLHMV]D EáG OHG]HQLD ID]\ OHF]
]DUD]HP SRZLNV]D SDVPR V]XPRZH
B
n
ZVNXWHN F]HJR SWOD MHVW
EDUG]LHM SRGDWQD QD V]XP\ L SRJDUV]D VL VWRVXQHN V\JQDáV]XP QD
Z\MFLX XNáDGX =QDF]QLH NRU]\VWQLHMV]H ZáDFLZRFL V]XPRZH
Z\ND]XM SWOH 3// ] ILOWUHP SURSRUFMRQDOQR FDáNXMF\P
( ) ( )
(
)
H s H s
2
3
,
NWyUH SRQDGWR ]DOH*QLH RG URG]DMX Z\PXV]HQLD
FKDUDNWHU\]XMVLWDNLPLVDP\PLOXEPQLHMV]\PLVWDW\F]Q\PLEáGDPL
ID]\=WHJRSRZRGXVQDMF]FLHMVWRVRZDQHZSUDNW\FH
352&(6<6<1&+521,=$&-,37/,3//
'RFKRG]HQLHGRVWDQXV\QFKURQL]DFML]DNUHVFKZ\WDQLD
0RGHO OLQLRZ\ SWOL QLH PR*H E\ü Z\NRU]\VWDQ\ GR RNUHOHQLD
VWDQXSU]HMFLRZHJRZSWOL3URFHVWHQRUD]RNUHOHQLHZDUXQNyZSU]\
NWyU\FK SWOD PR*H GRMü GR VWDQX V\QFKURQL]DFML PR*HP\ ]QDOH(ü
Z\áF]QLHZGURG]HUR]ZL]DQLDQLHOLQLRZHJRUyZQDQLDUy*QLF]NRZHJR
RSLVXMFHJR W SWO =Dáy*P\ *H Z FKZLOL W SWOD VSU]*HQLD
]ZURWQHJR MHVW UR]ZDUWD Z PLHMVFX SRáF]HQLD GHWHNWRUD ID]\ L ILOWUX
GROQRSU]HSXVWRZHJRDGRZHMFLDMHVWSU]\áR*RQ\V\JQDá
( )
( )
[
]
u t
U
t
i
i
i
i
=
+
sin
ω
ϕ
0
0
QDWRPLDVWSU]HELHJZ\WZDU]DQ\SU]H]JHQHUDWRU9&2PDSRVWDü
( )
( )
[
]
( )
[
]
u t
U
t
t
U
t
g
g
g
t
g
g
=
+
=
+
=
cos
cos
ω
ϕ
ω
ϕ
0
0
0
0
3XOVDFMHREXV\JQDáyZUy*QLVLRGVLHELHR
∆
ω
W]Q
ω
ω
ω
i 0
0
−
= ∆
6\JQDá
( )
u t
i
PR*HP\]DWHP]DSLVDüZSRVWDFL
( )
( )
[
]
X
L
t
U
t
t
i
i
=
+
sin
ω
ϕ
0
JG]LH
( )
( )
ϕ
ω
ϕ
i
i
t
t
=
+
∆
0
D
6NáDGRZDZROQR]PLHQQDQDSLFLDQDZ\MFLXGHWHNWRUDID]\RSLVDQDMHVW
ZWHG\]DOH*QRFL
( )
( )
[
]
( )
( )
( )
u
t
k
t
D
D
b
b
i
g
1
0
0
0
0
=
+
=
−
sin
∆
ω
ϕ
ϕ
ϕ
ϕ
JG]LH
MHVWSRF]WNRZ\PEáGHPID]\
:F]DVLH
t
≥
0
QDVWSXMH ]DPNQLFLH SWOL VSU]*HQLD ]ZURWQHJR
LUR]SRF]\QD VL SURFHV SU]HMFLRZ\ GRFKRG]HQLD GR VWDQX
V\QFKURQL]DFML
'OD
t
≥
0
RJyOQH UyZQDQLH SWOL SU]\ Z\NRU]\VWDQLX
]DOH*QRFLSU]\MPXMHSRVWDü
( )
( ) ( )
d
t
dt
K
t
h t
b
b
ϕ
ω
ϕ
=
−
∗
∆
sin
3R ]DPNQLFLX SWOL VSU]*HQLD ]ZURWQHJR VNáDGRZD
ZROQR]PLHQQD QD Z\MFLX GHWHNWRUD QLH MHVW MX* SU]HELHJLHP
VLQXVRLGDOQ\PRSLVDQ\PUyZQDQLHP
&KDUDNWHU\VW\F]Q\SU]HELHJQDSLFLD
( )
u t
O
QDZHMFLXJHQHUDWRUD
9&2ZSWOL RVLJDMFHM VWDQ V\QFKURQL]DFML SU]\ ]DáR*HQLX
ω
ω
i 0
0
>
SU]HGVWDZLRQRQDU\V
X
2
W
8
N
2
*
= ∆
ω
0
0
SWOD RWZDUWD
SURFHV FKZ\WDQLD
F]VWRWOLZRFL ]EOL*RQH
F]VWRWOLZRFL RGGDORQH
VNáDGRZD ZROQR]PLHQQD
5\V 1DSLFLH
( )
u t
O
QD ZHMFLX JHQHUDWRUD 9&2 SWOL RVLJDMFHM VWDQ
V\QFKURQL]DFML
1DSLFLH
( )
u t
O
NWyUH RWU]\PXMHP\ Z Z\QLNX SU]HMFLD QDSLFLD
( )
u
t
D1
SU]H] ILOWU GROQRSU]HSXVWRZ\ L HZHQWXDOQLH Z]PDFQLDF]
PRGXOXMH Z F]VWRWOLZRFL JHQHUDWRU 9&2 3U]\ ]DPNQLWHM SWOL
QDSLFLH
( )
u
t
D1
QD Z\MFLX GHWHNWRUD MHVW Z\QLNLHP PQR*HQLD
ZHMFLRZHJR SU]HELHJX VLQXVRLGDOQHJR
( )
u t
i
L ]PRGXORZDQHJR Z
F]VWRWOLZRFLSU]HELHJX
( )
u t
g
6]\ENRü ]PLDQ QDSLFLD QD Z\MFLX JHQHUDWRUD 9&2
( )
du t
dt
O
/
ZVND]XMH UyZQRF]HQLH QD Z]DMHPQ UHODFM SRPLG]\ SXOVDFMDPL
( )
ω
J
W
L
( )
ω
L
W *G\]PLDQ\QDSLFLD
( )
u t
O
]DFKRG] ZROQR WR
R]QDF]D*HSXOVDFMD
( )
ω
g
t
JHQHUDWRUD 9&2]EOL*DVLGRZDUWRFL
ω
i 0
:]URVWEH]Z]JOGQHMZDUWRFL
( )
du t
dt
O
/
R]QDF]D*HSXOVDFMD
( )
ω
g
t
RGGDOD VL RG ZDUWRFL
ω
i 0
U\V -DN ZLGDü QD U\V SU]HELHJ
( )
u t
O
Z VWDQLH QLHXVWDORQ\P MHVW QLHV\PHWU\F]Q\ Z]JO GHP RVL F]DVX
=DZLHUDRQVNáDGRZZROQR]PLHQQOLQLDSU]HU\ZDQDQDU\VNWyUD
Z\PXV]D]EOL*HQLHZDUWRFLUHGQLHMSXOVDFML
( )
ω
g
t
GR
ω
i 0
: VWDQLH XVWDORQ\P QDSLFLH
( )
u t
O
RVLJD ZDUWRü Z\QLNDMF ]
FKDUDNWHU\VW\NL SU]HVWUDMDQLD JHQHUDWRUD UyZQ L RNUH ORQH MHVW
]DOH*QRFL
U
k
k
O
G
i
G
=
=
−
∆
ω ω
ω
0
0
=JRGQLH ] ZF]HQLHMV]\PL UR]ZD*DQLDPL UyZ GRSXV]F]DOQD
SRF]WNRZD Uy*QLFD SXOVDFML
∆
ω
QLH PR*H SU]HNURF]\ü ]DNUHVX
WU]\PDQLD SWOL
∆
ω
T
ERZLHP Z SU]HFLZQ\P Z\SDGNX QLHPR*OLZH
E\áRE\ZHMFLHZVWDQV\QFKURQL]DFML=DWHP
PD[
∆
∆
ω
ω
≤
T
=XZDJLQDNRQLHF]QRüHOLPLQDFMLV]XPyZZHMFLRZ\FKZSWOL
ID]RZHMVWRVXMHVLILOWU\RSDPLHSU]HQRV]HQLD]QDF]QLHPQLHMV]\PRG
∆
ω
T
: W\P SU]\SDGNX RPyZLRQ\ Z\*HM HIHNW SU]HFLJDQLD
F]VWRWOLZRFL JHQHUDWRUD 9&2 Z SURFHVLH SU]HMFLRZ\P EG]LH ]E\W
VáDE\DE\GRSURZDG]LüGR]UyZQDQLDF]VWRWOLZRFL
ω
iO
L
( )
ω
g
t
0DNV\PDOQUy*QLFSXOVDFMLV\JQDáyZ
( )
( )
ω
ω
g
i
t
t
L
SU]\VNRNRZ\P
RGVWURMHQLX RG SXOVDFML URGNRZHM
ω
0
SU]\ NWyUHM SWOD RVLJD VWDQ
V\QFKURQL]DFMLQD]\ZDP\ ]DNUHVHPFKZ\WDQLDDQJFDSWXUHUDQJHOXE
]DNUHVHP ZFLJDQLD DQJ SXOO LQ UDQJH L R]QDF]DP\ SU]H]
∆
ω
C
:]DMHPQH XV\WXRZDQLH ]DNUHVyZ FKZ\WDQLD L WU]\PDQLD LOXVWUXMH
U\V
X
2
ω
L
N
*
∆
ω
&
∆
ω
7
ω
ω
0
− ∆
F
*
N
3
4
3
1
3
0
3
3
3
2
ω
0
ω
ω
0
+ ∆
F
*
N
QDFK\OHQLH
]DNUHV FKZ\WDQLD
]DNUHV WU]\PDQLD
5\V=DNUHV\FKZ\WDQLDLWU]\PDQLDSWOLID]RZHM
&KDUDNWHU\VW\NL QD U\V SU]HGVWDZLDM ]DOH*QRü QDSLFLD
u
O
QD ZHMFLX JHQHUDWRUD 9&2 RG SXOVDFML V\JQDáX ZHMFLRZHJR
( )
ω
i
t
Z\]QDF]RQSU]\EDUG]RZROQ\FK]PLDQDFKF]VWRWOLZRFLV\JQDáX
-H*HOL SRF]WNRZD SXOVDFMD V\JQDáX ZHMFLRZHJR MHVW EDUG]R
PDáDWR
u
O
DJHQHUDWRU9&2Z\WZDU]DQDSLFLHRF]VWRWOLZRFL
VSRF]\QNRZHM
ω
0
3U]\ Z]URFLH SXOVDFML V\JQDáX QDSLFLH
u
O
MHVW
UyZQH ]HUX QLHFR Uy*QH RG ]HUD ZVNXWHN RPDZLDQHM MX* QLHV\PHWULL
SU]HELHJX QD Z\MFLX GHWHNWRUD ID]\ D* GR NUDFD ]DNUHVX FKZ\WDQLD
SXQNW 3
QD U\V NLHG\ WR VNRNRZR RVLJD ZDUWRü Z\QLNDMF ]
FKDUDNWHU\VW\NLSU]HVWUDMDQLDJHQHUDWRUD9&2
(
)
U
k
O
G
g
=
−
−
1
0
ω
ω
3U]\GDOV]\PZ]URFLHSXOVDFMLV\JQDáXZHMFLRZHJRQDSLFLH
u
O
MHVW OLQLRZ IXQNFM
ω
i
R QDFK\OHQLX k
G
−
1
D* GR JyUQHJR NUDFD
]DNUHVX WU]\PDQLD SXQNW 3
QD U\V NLHG\ WR QDVWSXMH SRZUyW
QDSLFLD
u
O
GRZDUWRFL]HURZHMDSXOVDFMDJHQHUDWRUD9&2SRZUDFDGR
ZDUWRFL
ω
0
=PQLHMV]DMF ] NROHL SXOVDFM V\JQDáX RVLJQLHP\
V\QFKURQL]DFM JHQHUDWRUD SR ]EOL*HQLX VL GR JyUQHJR NUDFD ]DNUHVX
FKZ\WDQLD SXQNW 3
QD U\V :WHG\ QDSLFLH
u
O
RVLJD VNRNRZR
ZDUWRü
(
)
ω
ω
0
+ ∆
C
G
k
/
D SXOVDFMD JHQHUDWRUD 9&2 Z\QRVL
(
)
ω
ω
0
+ ∆
C
=HUZDQLH V\QFKURQL]DFML QDVWSL SU]\ SXOVDFML V\JQDáX
UyZQHM
ω
ω
0
− ∆
T
NLHG\WR]RVWDQLHRVLJQLW\GROQ\NUDQLHF]DNUHVX
WU]\PDQLDSXQNW3
QDU\V
3URFHVV\QFKURQL]DFMLSWOLSLHUZV]HJRU]GX
3WOD SLHUZV]HJR U]GX QLH ]DZLHUD ILOWUX SUDNW\F]QLH
]DVWRVRZDQ\ ILOWU GROQRSU]HSXVWRZ\ PD SDVPR V]HUV]H RG ]DNUHVX
WU]\PDQLD7UDQVPLWDQFML
( )
H s
=
1
RGSRZLDGD
( ) ( )
h t
t
=
δ
ZREHFF]HJR
Z\UD*HQLHSU]\MPXMHSRVWDü
( )
( )
[
]
d
t
dt
K
t
b
b
ϕ
ω
ϕ
=
−
∆
sin
,VWRWQH LQIRUPDFMH R ]DFKRZDQLX XNáDGX PR*HP\ RWU]\PDü QD
SRGVWDZLH RGZ]RURZDQLD UyZQDQLD QD SáDV]F]\(QLH R
ZVSyáU]GQ\FK
( )
( )
d
t
dt
t
b
b
ϕ
ϕ
/
L
]ZDQHMSáDV]F]\]QID]RZ
*UDILF]QH UR]ZL]DQLH UyZQDQLD QD SáDV]F]\(QLH ID]RZHM
RWU]\PXMHP\ZSRVWDFLWUDMHNWRULLID]RZHMJG]LHND *G\SXQNWWUDMHNWRULL
REUD]XMHVWDQXNáDGXZFKZLOL WF]DVWMHVWSDUDPHWUHP-DNSRND]DQR
QD U\V RWU]\PDQD WUDMHNWRULD MHVW VLQXVRLG SU]HVXQLW QD RVL
U]GQ\FKR
∆
ω
3XQNW\ Z NWyU\FK WUDMHNWRULD SU]HFLQD R RGFLW\FK V SXQNWDPL
RGZ]RURZXMF\PL VWDQ UyZQRZDJL XNáDGX
(
)
d
dt
b
ϕ
/
.
=
0
6SRUyG
SXQNWyZ ZLGRF]Q\FK QD U\V SXQNW\ 3
3
3
V SXQNWDPL
UyZQRZDJLWUZDáHMQDWRPLDVWZSXQNWDFK3
3
3
XNáDGMHVWZVWDQLH
UyZQRZDJL QLHWUZDáHM :\QLND WR VWG *H MHOL
d
dt
b
ϕ
/
>
0
WR
( )
ϕ
b
t
PXVLZ]UDVWDüMHOLQDWRPLDVW
( )
d
dt
t
b
b
ϕ
ϕ
/
,
<
0
WR
PXVLPDOHü
3
2
−
3
π
∆
ω ω
ω
=
−
L0
0
−
2
π
−
π
0
3
1
π
2
π
3
π
4
π
3
3
3
4
2
π
ω
+
DUFVLQ
∆
.
∆
ω
+
.
∆
ω
ϕ
+
.
E
VLQ
∆
ω
−
.
DUFVLQ
∆
ω
.
ϕ
E
G
GW
E
ϕ
3
5
3
6
5\V2GZ]RURZDQLHUyZQDQLDQDSáDV]F]\(QLHID]RZHM
3R ]V\QFKURQL]RZDQLX SWOD ID]RZD ]DZV]H ]QDMGXMH VL Z
MHGQ\P]HVWDQyZUyZQRZDJLWUZDáHM-DNZ\QLND]U\VZDUXQNLHP
Z\VWSLHQLDSXQNWyZUyZQRZDJLWUZDáHMMHVWDE\ZVWSQHUR]VWURMHQLH
∆
ω
E\áRFRQDMZ\*HMUyZQHZ]PRFQLHQLXSWOL
.
-H*HOLSRF]WNRZ\EáGID]\
( )
ϕ
b
0
]DZDUW\MHVWZSU]HG]LDOH
( )
− −
<
< −
π
ω ϕ
π
ω
K
K
b
arcsin
arcsin
∆
∆
0
WR QDMEOL*V]\P SXQNWHP UyZQRZDJL WUZDáHM MHVW SXQNW 3
NWyUHJR
ZVSyáU]GQDQDRVL
ϕ
b
Z\QRVL
ϕ
ω
b
K
0
=
arcsin
∆
3U]HELHJ EáGX ID]\
( )
ϕ
b
t
RG ZDUWRFL SRF]WNRZHM
( )
ϕ
b
0
RNUHORQHM ]DOH*QRFL GR ZDUWRFL XVWDORQHM
ϕ
b0
RNUHORQHM
]DOH*QRFLMHVWDSHULRG\F]QIXQNFMF]DVX&]DV
T
ε
SRXSá\ZLH
NWyUHJR EáG ID]\ ]EOL*\ VL QD RGOHJáRü
ε
GR ZDUWRFL XVWDORQHM
(
)
ϕ
ϕ
b
b
t
= ∞ =
0
PR*HP\Z\]QDF]\ü]HZ]RUXNWyU\RWU]\PXMHP\SU]H]
RGSRZLHGQLHVFDáNRZDQLHUyZQDQLD
( )
T
K
d
b
b
b
b
ε
ϕ
ϕ
ε
ω
ϕ
ϕ
=
−
+
∫
1
0
0
∆
sin
SU]\F]\P
( )
( )
ε
ϕ
ϕ
ε
ϕ
ϕ
<
<
>
>
0
0
0
0
0
0
GOD
GOD
b
b
b
b
:LHONRü
T
ε
QD]\ZDP\ F]DVHP RVLJDQLD V\QFKURQL]DFML OXE
F]DVHPFKZ\WDQLDDQJDFTXLVLWLRQWLPH&]DV
T
ε
SU]\XVWDORQ\P
ε
MHVWV]F]HJyOQLHGáXJLJG\
( )
ϕ
b
0
PDZDUWRü]EOL*RQGRZVSyáU]GQHM
VWDQXUyZQRZDJLQLHVWDELOQHM
3URFHVV\QFKURQL]DFMLSWOLGUXJLHJRU]GX
%DUG]R F]VWR Z SWOL ID]RZHM GUXJLHJR U]GX VWRVRZDQ\ MHVW
GROQRSU]HSXVWRZ\ILOWUSURSRUFMRQDOQRFDáNXMF\RWUDQVPLWDQFML
( )
(
)
H s
s
s
2
2
1
2
1
1
=
+
+
+
τ
τ
τ
5yZQDQLH Uy*QLF]NRZH RSLVXMFH SWO ID]RZ SREXG]RQ
VNRNLHPF]VWRWOLZRFL
∆
ω
WDNVDPRMDNZSWOLSLHUZV]HJRU]GXL
]DZLHUDMFHMILOWURWUDQVPLWDQFML
( )
H s
2
PDSRVWDü
( )
( )
( )
( )
d
t
dt
K
t d
t
dt
K
t
b
b
b
b
2
2
2
1
2
1
2
1
2
1
ϕ
τ
ϕ
τ
τ
ϕ
τ
τ
ϕ
ω
τ τ
+
+
+
+
+
=
+
cos
sin
∆
-H*HOL
1
2
/
,
τ
<<
K
WRUyZQDQLHXSUDV]F]DVLGRSRVWDFL
( )
( )
( )
( )
d
t
dt
t
d
t
dt
t
K
b
n
b
b
n
b
n
2
2
2
2
2
ϕ
ξ ω
ϕ
ϕ
ω
ϕ
ω
ω
+
+
=
cos
sin
∆
%DGDQLHSURFHVXV\QFKURQL]DFMLSWOLGUXJLHJRU]GX]HZ]JOGX
QD QLHOLQLRZRü UyZQDQLD Uy*QLF]NRZHJR QDMOHSLHM MHVW
SURZDG]LüPHWRGDPLQXPHU\F]Q\PL1L*HMSURFHVWHQ]RVWDQLHRSLVDQ\
UDF]HMSRJOGRZRRUD]]RVWDQSU]\WRF]RQHQLHNWyUHZ\QLNLNRFRZHQD
SRGVWDZLHOLWHUDWXU\>@
3U]\W\FKVDP\FK]DáR*HQLDFKMDNLHSRF]\QLRQRSU]\DQDOL]LHSWOL
SLHUZV]HJR U]GX QDSLFLH
( )
u t
O
QD ZHMFLX JHQHUDWRUD 9&2 Z
PRPHQFLH UR]SRF]FLD SURFHVX V\QFKURQL]DFML RNUHORQH MHVW
]DOH*QRFL
( )
( )
(
)
u t
k
H
t
O
D
≈
∆
∆
ω
ω
sin
5yZQDQLH RWU]\PDQR QD SRGVWDZLH ]DOH*QRFL SU]\
SRPLQLFLXSRF]WNRZ\FKID]V\JQDáyZ
6\JQDá
( )
u t
O
PRGXOXMH JHQHUDWRU 9&2 SU]\ F]\P PDNV\PDOQD
RGFK\áNDSXOVDFML
( )
ω
ω
g
t
RG
0
]JRGQLH]]DOH*QRFLDPLL
Z\QRVL
( )
( )
ω
ω
ω
g
G
O
t
k U
K H
−
=
≈
0 max
max
∆
JG]LH
K
k k
D
G
=
MHVWZ]PRFQLHQLHPSWOL
-H*HOLPDNV\PDOQDRGFK\áND
( )
ω
g
t
EG]LHUyZQDOXEZLNV]DRG
∆
ω
W]QJG\VSHáQLRQD]RVWDQLHQLHUyZQRü
( )
K H
∆
∆
ω
ω
≥
WRZyZF]DVMDN]D]QDF]RQRQDU\VZFLJX MHGQHJR RNUHVX
( )
u t
O
Z\VWSLPRPHQW]UyZQDQLDVLSXOVDFML
( )
ω
g
t
]SXOVDFM
ω
i 0
LZFKZLOL
WHMQDVWSLV\QFKURQL]DFMDSU]HELHJyZ
( )
( )
u t
u t
i
g
L
.
ω
L0
ω
0
0
W
( )
. +
∆
∆
ω
ω
=
( )
ω
J
W
( )
ω
J
W
5\V2VLJDQLHVWDQXV\QFKURQL]DFMLZFLJXMHGQHJRRNUHVX
( )
u t
O
=DNUHVSXOVDFML
∆
ω
L
VSHáQLDMF\ZDUXQHN
(
)
K H
L
L
∆
∆
ω
ω
=
QD]\ZDP\ ]DNUHVHP FKZ\WDQLD Z NWyU\P QDVWSXMH V\QFKURQL]DFMD Z
FLJXMHGQHJRRNUHVX
( )
u t
O
DQJORFNLQUDQJH
0R*QD Z\ND]Dü *H SU]\ ]DVWRVRZDQLX ILOWUX R WUDQVPLWDQFML
( )
H s
1
UyZQVáXV]QDMHVW]DOH*QRü
∆
ω
ω
L
n
≈
1DWRPLDVW Z SU]\SDGNX ILOWUX R WUDQVPLWDQFML
( )
H s
2
UyZQ
RWU]\PXMHVL
∆
ω
ξ ω
L
n
≈
2
:REXSU]\SDGNDFKVWDQV\QFKURQL]DFMLRVLJDVLSRF]DVLH
t
L
n
≈
1 /
ω
: SU]\SDGNX JG\ PDNV\PDOQD RGFK\áND
( )
ω
ω
g
t
RG
0
Z\UD*HQLH MHVW PQLHMV]D RG SRF]WNRZHM Uy*QLF\ SXOVDFML
V\JQDáyZ
( )
( )
u t
u t
i
g
L
R]QDF]RQHM SU]H]
∆
ω
WR SRF]WNRZR QLH
Z\VWSL Z *DGQ\P PRPHQFLH ]UyZQDQLH VL SXOVDFML
( )
ω
g
t
RUD]
ω
i 0
W\FKV\JQDáyZ3URFHVSU]HFLJDQLDSXOVDFMLJHQHUDWRUD9&2GRSXOVDFML
V\JQDáXZHMFLRZHJR
ω
i 0
]RVWDáRSLVDQ\SRJOGRZRZUR]G]
6NáDGRZDZROQR]PLHQQD
( )
u
t
D1
QDZ\MFLXGHWHNWRUDID]\PDSRVWDü
( )
( )
[
]
X W
N
W W
'
'
U
=
VLQ
∆
ω
JG]LH
( )
( )
∆
ω
ω
ω
r
i
g
t
t
=
−
0
D
MHVWFKZLORZUy*QLFSXOVDFMLV\JQDáXZHMFLRZHJRLJHQHUDWRUD9&2
:LHONRüWD]PLHQLDVLZF]DVLHLW\ONRZPRPHQFLH
t
=
0
PDZDUWRü
( )
∆
∆
ω
ω ω
ω
r
i
0
0
0
=
=
−
1DSLFLHSU]HVWUDMDMFHJHQHUDWRU9&2PDWHUD]SRVWDü
( )
( )
[
]
( )
[
]
X W
N +
W
W W
2
'
U
U
=
∆
∆
ω
ω
VLQ
SU]\F]\PSXOVDFMD
( )
ω
g
t
QLH]PLHQLDVLVLQXVRLGDOQLH
.V]WDáW SU]HELHJX QDSLFLD
( )
u t
O
RUD] ZLHONRFL
( )
∆
ω
r
t
Z
SURFHVLHV\QFKURQL]DFMLSU]HGVWDZLRQRSRJOGRZRQDU\V
X
2
W
W
∆
ω
U
∆
ω
U
a)
b)
ω
ω
L0
0
−
( )
( )
∆
ω
ω
ω
U
L
J
W
W
=
−
PDáH F] ]EOL*RQH ILOWU QLH WáXPL
GX*H
F] RGGDORQH ILOWU WáXPL
5\V3URFHVV\QFKURQL]DFMLSWOLID]RZHMDSU]HELHJQDSLFLD
( )
u t
O
ESU]HELHJ
Uy*QLF\SXOVDFML
( )
( )
∆
ω
ω
ω
U
L
J
W
W
=
−
&]ü RNUHVX SU]HELHJX
( )
u t
O
NLHG\
( )
∆
ω
r
t
MHVW PDáH MHVW
GáX*V]D QL* F]ü RNUHVX WHJR SU]HELHJX JG\
( )
∆
ω
r
t
MHVW GX*H
:\QLNLHP WHM DV\PHWULL MHVW SRMDZLHQLH VL VNáDGRZHM ZROQR]PLHQQHM
SU]HELHJX
( )
u t
O
L GRSURZDG]HQLH Z RNUHORQ\FK ZDUXQNDFK GR VWDQX
V\QFKURQL]DFMLSWOL3RF]WNRZDUy*QLFDSXOVDFML
∆
∆
ω
ω
=
C
V\JQDáyZ
( )
( )
u t
u t
i
g
L
,
SU]\ NWyUHM Z\VWSL MHV]F]H Z XNáDG]LH V\QFKURQL]DFMD
MHVW ]DNUHVHP FKZ\WDQLD : M]\NX DQJLHOVNLP GOD RGUy*QLHQLD RG
SU]\SDGNXRPyZLRQHJRSRSU]HGQLRVWRVXMHVLQD]ZSXOOLQUDQJH
3RPLG]\ZLHONRFLDPL
∆
∆
∆
ω
ω
ω
L
C
T
,
L
]DFKRG]UHODFMH
∆
∆
∆
ω
ω
ω
L
C
T
<
'ODSWOLGUXJLHJRU]GX]DNUHVFKZ\WDQLDZ\QRVL>@
∆
ω
π
ξ ω ω
C
n
n
K
≈
−
8
2
&]DVWUZDQLDSURFHVXV\QFKURQL]DFMLRNUHORQ\MHVW]DOH*QRFL
( )
t
C
n
≈
∆
ω
ξ ω
2
2
2
&]DVV\QFKURQL]DFML
t
C
PR*HE\üGáXJLJG\
∆
ω
MHVW]EOL*RQHGR
∆
ω
C
6&$/21(37/()$=2:(
:V]\VWNLHEORNLIXQNFMRQDOQHWZRU]FHSWOID]RZVáDWZHGR
Z\WZDU]DQLD Z WHFKQRORJLL PRQROLW\F]QHM VWG WH* REHFQLH SURGXNXMH
VL ZLHOH VFDORQ\FK SWOL ID]RZ\FK SUDFXMF\FK Z V]HURNLP SDPLH
F]VWRWOLZRFL L Z\PDJDMF\FK PLQLPDOQHM OLF]E\ HOHPHQWyZ
GRáF]DQ\FK]]HZQWU]
*áyZQ\PL HOHPHQWDPL SWOL ID]RZHM V JHQHUDWRU SU]HVWUDMDQ\
QDSLFLHPOXESUGHPGHWHNWRUID]\RUD]ILOWUGROQRSU]HSXVWRZ\
'HWHNWRUID]\
: VFDORQ\FK XNáDGDFK 3// MDNR GHWHNWRU\ ID]\ SRZV]HFKQLH
VWRVXMH VL PRGXODWRU\ ]UyZQRZD*RQH QDMSURVWV]H XSURV]F]RQH
F]WHURüZLDUWNRZHXNáDG\PQR*FHRSLVDQHZUR]G]
:SURZDG]DMFQRZHR]QDF]HQLD]PLHQQ\FKZUR]G]PRGXODWRU
]UyZQRZD*RQ\UR]ZD*DQRMDNRXNáDGPQR*F\
( )
( )
( )
( )
u
t
u t
u t
u t
X
i
Y
g
=
=
,
SU]HDQDOL]XMHP\ WU]\ PR*OLZH SU]\SDGNL SRG NWHP Z\NRU]\VWDQLD
PRGXODWRUDMDNRGHWHNWRUDID]\
8SURV]F]RQ\ VFKHPDW LGHRZ\ PRGXODWRUD ]UyZQRZD *RQHJR
SU]HGVWDZLRQRQDU\V
−
8
((
T
4
T
3
T
5
T
6
T
2
T
1
( )
X W
L
( )
X W
J
,
((
+
8
&&
5
&
5
&
( )
X W
G
5\V
6FKHPDW
LGHRZ\
PRGXODWRUD]UyZQRZD*RQHJR
3U]\SDGHN
( )
( )
u t
u t
i
T
g
T
<<
<<
ϕ
ϕ
;
'ODXNáDGX]U\V]DOH*QRüSU]HNV]WDáFDVLGRSRVWDFL
( )
( )
( ) ( )
u t
i t R
I
R
u t u t
D
R
C
EE
C
T
i
g
=
=
4
2
ϕ
'ODGZyFKSU]HELHJyZSU]HVXQLW\FKZID]LH
( )
(
)
( )
u t
U
t
u t
U
t
i
i
g
g
=
+
=
cos
cos
ω
ϕ
ω
0
0
QD SRGVWDZLH ]DOH*QRFL RWU]\PXMHP\ FKDUDNWHU\VW\N
XNáDGXMDNRGHWHNWRUDID]\
( )
U
u t
I
R
U U
D
D
EE
C
T
g
i
0
2
8
=
=
ϕ
ϕ
cos
3U]\SDGHN
( )
( )
u t
u t
g
T
i
T
>>
<<
2
2
ϕ
ϕ
;
7UDQ]\VWRU\7
7
U\VVWHURZDQHV\JQDáHP
( )
u t
g
RGX*HM
DPSOLWXG]LH ]DFKRZXM VL Z SU]\EOL*HQLX MDN VWHURZDQH NOXF]H -HOL
V\JQDá
( )
u t
g
PDZDUWRüGRGDWQLWRZWHG\WUDQ]\VWRU\7
L7
PR*QD
WUDNWRZDüMDNRNOXF]H]ZDUWHDWUDQ]\VWRU\7
L7
MDNRNOXF]HUR]ZDUWH
'OD XMHPQHM ZDUWRFL V\JQDáX
( )
u t
g
WUDQ]\VWRU\ SU]\MPXM VWDQ\
SU]HFLZQH:W\PSU]\SDGNXQDSLFLHZ\MFLRZHX]DOH*QLRQHMHVWW\ONR
RG SR]LRPX QDSLFLD
( )
u t
i
3U]HELHJ QDSLFLD Z\MFLRZHJR MHVW
Z\QLNLHP PQR*HQLD V\JQDáX
( )
u t
i
R PDáHM DPSOLWXG]LH ]
V\QFKURQL]RZDQ\P SU]HELHJLHP SURVWRNWQ\P NWyUHJR DPSOLWXGD MHVW
GX*D L QLH PD ZSá\ZX QD Z\QLN PQR*HQLD 2GSRZLHGQLH SU]HELHJL
F]DVRZH SU]\ VLQXVRLGDOQ\P SU]HELHJX
( )
u t
i
SU]HGVWDZLRQR QD
U\VD
UHGQLDZDUWRüQDSLFLDZ\MFLRZHJR
U
D0
GHWHNWRUDZ\QRVL
( )
( ) ( )
( )
( )
U
u t
u t d
t
U
t d
t
U
t d
t
D
D
D
Dm
Dm
0
0
0
1
1
=
=
=
=
−
+
=
∫
∫
∫
π
ω
π
ω
ω
ω
ω
π
ϕ
ϕ
π
sin
sin
=
2U
Dm
π
ϕ
cos
8
'0
−
π
ϕ
−
π
2
b)
( )
X W
L
ω
W
a)
( )
X W
J
ω
W
( )
X W
'
ω
W
π
2
π
ϕ
8
'P
2
π
π
ϕ
8
L
8
W
L
L
VLQ
ω
0
π
2
π
3
2
π
2
J 5 8
P &
L
π
0
0
0
5\V 0RGXODWRU ]UyZQRZD*RQ\ VWHURZDQ\ V\JQDáHP VLQXVRLGDOQ\P
L V\QFKURQL]RZDQ\ SU]HELHJLHP SURVWRNWQ\P D SU]HELHJL F]DVRZH
EFKDUDNWHU\VW\NLGHWHNWRUD
$PSOLWXG
U
Dm
QDSLFLD Z\MFLRZHJR
( )
u t
D
PR*QD X]DOH*QLü RG
DPSOLWXG\
U
i
QDSLFLDZHMFLRZHJR
( )
u t
i
U
g R U
Dm
m
C
i
=
JG]LH
g
m
MHVWWUDQVNRQGXNWDQFMWUDQ]\VWRUyZ7
L7
= UyZQD RWU]\PXMHP\ FKDUDNWHU\VW\N GHWHNWRUD
U\VE
U
g R U
D
m
C
i
0
2
=
π
ϕ
cos
0DNV\PDOQHQDFK\OHQLHFKDUDNWHU\VW\NLGHWHNWRUDID]\Z\QRVL
k
dU
d
U
g R
D
D
i
m
C
=
= −
0
2
ϕ
π
max
3U]\SDGHN
( )
( )
u t
u t
i
g
T
,
>>
2
ϕ
a)
( )
X W
J
ω
W
2
π
π
0
3
π
4
π
5
π
( )
X W
L
ω
W
2
π
π
0
3
π
4
π
5
π
( )
X W
'
ω
W
2
π
π
0
3
π
4
π
5
π
6
1
6
2
, 5
(( &
−
, 5
(( &
ϕ
−
, 5
(( &
, 5
(( &
8
'0
ϕ
2
π
π
π
2
−
π
2
−
π
b)
5\V 0RGXODWRU ]UyZQRZD*RQ\ GOD GX*\FK DPSOLWXG V\JQDáyZ ZHMFLRZ\FK
DSURVWRNWQHV\JQDá\VWHUXMFHEFKDUDNWHU\VW\NDGHWHNWRUD
-H*HOL RE\GZD XNáDG\ ZHMFLRZH PDM RGSRZLHGQLR GX*H
DPSOLWXG\WRZV]\VWNLHWUDQ]\VWRU\SUDFXMMDNRGZXVWDQRZHNOXF]H
3R Z\PQR*HQLX RGSRZLHGQLFK SURVWRNWQ\FK SU]HELHJyZ
NOXF]XMF\FKSU]HáF]DMF\FKSUG
I
EE
LSRVFDáNRZDQLXRWU]\PXMHP\
FKDUDNWHU\VW\N
GHWHNWRUD
2GSRZLHGQLH
SU]HELHJL
F]DVRZH
SU]HGVWDZLRQRQDU\VD
UHGQLDZDUWRü
U
D0
QDSLFLDZ\MFLRZHJRGHWHNWRUDZ\QRVL
( ) ( )
U
u t d
t
I
R
I
R
I
R
D
D
EE
C
EE
C
EE
C
0
0
1
1
2
=
=
− −
=
=
−
∫
π
ω
π ϕ
π
ϕ
π
ϕ
π
π
3U]HELHJ FKDUDNWHU\VW\NL
( )
U
f
D0
=
ϕ
GHWHNWRUD ID]\ SU]HGVWDZLRQR QD
U\VE 1DFK\OHQLH FKDUDNWHU\VW\NL GHWHNWRUD ID]\ Z SU]HG]LDOH
0
≤ ≤
ϕ π
Z\QRVL
k
dU
d
I
R
D
D
EE
C
=
= −
0
2
ϕ
π
*HQHUDWRU\SU]HVWUDMDQHQDSLFLHP9&2
3WOD ID]RZD G]LDáD SRSUDZQLH ]DUyZQR JG\ ]RVWDQLH Z QLHM
]DVWRVRZDQ\ JHQHUDWRU 9&2 GUJD VLQXVRLGDOQ\FK MDN UyZQLH* GUJD
SURVWRNWQ\FK -HVW WR NRQVHNZHQFM G]LDáDQLD GHWHNWRUD ID]\ NWyU\
SRUyZQXMH ID]\ SU]HELHJyZ ZHMFLRZ\FK D QLH LFK NV]WDáW\ :
VFDORQ\FK SWODFK 3// VWRVXMH VL JHQHUDWRU\ 9&2 Z SRVWDFL
PXOWLZLEUDWRUyZ Z\WZDU]DMF\FK SU]HELHJL SURVWRNWQH 6SHáQLDM RQH
Z ]DGRZDODMF\ VSRVyE Z\PDJDQLD VWDZLDQH JHQHUDWRURP 9&2 WDNLH
MDN
OLQRZD]DOH*QRüF]VWRWOLZRFLRGQDSLFLD
GREUDVWDELOQRüF]VWRWOLZRFL
áDWZRüJHQHURZDQLDZF]
GX*DVSUDZQRüHQHUJHW\F]QD
V]HURNL]DNUHVOHG]HQLD
áDWZRüSU]HVWUDMDQLD
:UyGPXOWLZLEUDWRUyZVWRVXMHVLQDMF]FLHMGZDXNáDG\9&2W\SX
LQWHJUDWRUSU]HU]XWQLN L 9&2 W\SX PXOWLZLEUDWRU ] SRMHPQR FLRZ\P
VSU]*HQLHPHPLWHURZ\P
D9&2W\SXLQWHJUDWRUSU]HU]XWQLN
6FKHPDW LGHRZ\ XNáDGX ZUD] ] LGHDOL]RZDQ\PL SU]HELHJDPL
F]DVRZ\PL QDSLü Z XNáDG]LH SU]HGVWDZLRQR QD U\VXQNX
0LG]\V]F]\WRZHZDUWRFLQDSLFLDQD NRQGHQVDWRU]H NWyU\ RNUHVRZR
MHVWáDGRZDQ\LUR]áDGRZ\ZDQ\]UHJXORZDQ\FK (UyGHáVWDáRSUGRZ\FK
RNUHORQHVSURJRZ\PLQDSLFLDPLNRPSDUDWRUD]KLVWHUH]
U
R
R
R
U
p
k
1 2
1
1
2
1 2
,
,
=
+
JG]LH U
k 1 2
,
RGSRZLHGQLR PDNV\PDOQH L PLQLPDOQH QDSL FLH QD
Z\MFLXNRPSDUDWRUD
&]VWRWOLZRü JHQHURZDQHJR SU]HELHJX PR*HP\ Z\]QDF]\ü ]
ZDUXQNX *H NRQGHQVDWRU & SU]HáDGRZ\ZDQ\ MHVW VWDá\P SU GHP , RG
SURJRZHMZDUWRFLQDSLFLD
U
P1
GR
U
P 2
ZFLJXSRáRZ\RNUHVX
T 2
U
U
tg
T
I
C
T
P
P
1
2
2
2
−
=
=
α
6NG
(
)
f
T
I
C U
U
P
P
= =
−
1
2
1
2
&
5
1
5
2
+
−
NRPS
X
1
2
X
5(*
X
5(*
X
&
8
32
8
31
X
&
8
.1
8
.2
X
7 4 7 2
3
4
7
7
W
W
5\V9&2W\SXLQWHJUDWRUSU]HU]XWQLN
-DN ZLGDü F]VWRWOLZRü GUJD MHVW OLQLRZ IXQNFM SUGX ,
=DSHZQLDMFOLQLRZHX]DOH*QLHQLHSUGX,RGQDSLFLDVWHUXMFHJR
u
REG
RWU]\PXMHP\OLQLRZFKDUDNWHU\VW\NSU]HVWUDMDQLDJHQHUDWRUD
E 9&2 W\SX PXOWLZLEUDWRU ] SRMHPQRFLRZ\P VSU]*HQLHP
HPLWHURZ\PXNáDG%RZHVD*UHEHQH¶D
0XOWLZLEUDWRU\ ] SRMHPQRFLRZ\P VSU]*HQLHP HPLWHURZ\P
ZUD]]LFKOLF]Q\PLPRG\ILNDFMDPLXNáDGRZ\PLSR]ZDODMQDJHQHUDFM
SU]HELHJyZ Z V]HURNLP ]DNUHVLH F]VWRWOLZRFL GR NLONXVHW 0+] D
QDZHWGR*+]8NáDG\WHVQDMEDUG]LHMSRSXODUQ\PLUR]ZL]DQLDPL
JHQHUDWRUyZ9&2ZVFDORQ\FKSWODFKID]RZ\FK
1D U\VD SU]HGVWDZLRQR VFKHPDW LGHRZ\ PXOWLZLEUDWRUD ]
SRMHPQRFLRZ\P VSU]*HQLHP HPLWHURZ\P Z NWyU\P ]DVWRVRZDQR
GRGDWNRZHVSU]*HQLHNU]\*RZHNROHNWRUyZLED]WUDQ]\VWRUyZZFHOX
SU]\VSLHV]HQLDSURFHVXSU]HU]XWXZXNáDG]LH
6SU]*HQLH NU]\*RZH UHDOL]RZDQH MHVW ]D SRUHGQLFWZHP
ZWyUQLNyZ ] WUDQ]\VWRUDPL 7
7
]DVLODQ\FK ] RGG]LHOQ\FK (UyGHá
SUGRZ\FK
I
E
X
&1
5
(
X
5(*
T
6
T
5
5
(
,
(
,
(
T
1
T
3
T
4
T
2
&
5
&
'
2
'
1
5
&
'=
8
&&
8
&&1
X
&2
X
( 2
X
(1
,
,
X
&2
X
( 2
X
(1
X
&1
7 2
7 2
2
8
%(3
2
8
%(3
a
, &
, &
2
8
%(3
8
&&1
8
&&1
W
W
W
W
8
&&1
8
&&1
8
)
8
)
a)
b)
5\V*HQHUDWRU9&2Z]PRG\ILNRZDQ\PXNáDG]LH%RZHVDDVFKHPDWLGHRZ\
ELGHDOL]RZDQHSU]HELHJLF]DVRZHQDSLüZXNáDG]LH
7UDQ]\VWRU\ 7
7
]QDMGXM VL QD SU]HPLDQ Z VWDQLH RGFLFLD OXE
SU]HZRG]HQLD ZREHF F]HJR SUG , MHGQHJR ]H (UyGHá SUGRZ\FK Z
REZRGDFKHPLWHUyZW\FKWUDQ]\VWRUyZSU]HSá\ZDSU]H]NRQGHQVDWRU&
UD] Z MHGQ\P UD] Z GUXJLP NLHUXQNX Z\ZRáXMF QD QLP SU]HELHJ
QDSLFLDRNV]WDáFLHWUyMNWQ\P7UDQ]\VWRU\7
7
RQDSLFLX
u
REG
QD
ED]DFK SHáQL URO (UyGHá SUGRZ\FK Z REZRGDFK HPLWHUyZ 7
7
R
ZDUWRFLDFK SUGX , OLQLRZR X]DOH*QLRQ\FK RG QDSLFLD VWHUXMFHJR
u
REG
'LRG\ '
'
WUDQ]\VWRU\ Z SRáF]HQLX GLRGRZ\P RJUDQLF]DM
QLHSR*GDQH]PLDQ\DPSOLWXG\QDSLüQDNROHNWRUDFKWUDQ]\VWRUyZ7
7
RUD]XVWDODMSR]LRP\QDSLüSU]\NWyU\FKQDVWSXMH]DáF]HQLHW\FK
WUDQ]\VWRUyZ1DU\VESU]HGVWDZLRQRSU]HELHJLF]DVRZHQDSLüZ
XNáDG]LH
$QDOL] SUDF\ XNáDGX UR]SRF]QLHP\ RG PRPHQWX Z NWyU\P 7
MHVW ]DWNDQ\ D 7
SU]HZRG]L VXP SUGyZ
2I
:WHG\ QDSLFLH QD
NROHNWRU]H 7
MHVW PQLHMV]H RG QDSLFLD ]DVLODMFHJR
U
CC1
R QDSLFLH
GLRG\ SU]HZRG]FHM
U
F
QDWRPLDVW QDSLFLH QD MHJR HPLWHU]H MHVW
PQLHMV]H RG
U
CC1
R
2
2
U
U
BEP
F
≈
SU]\ SRPLQLFLX EDUG]R PDáHJR
VSDGNXQDSLFLDQDUH]\VWDQFML
5
&
RGSUGXED]\
I
B 4
WUDQ]\VWRUD7
:VNXWHNSU]HáDGRZ\ZDQLDNRQGHQVDWRUD&SRWHQFMDáHPLWHUDWUDQ]\VWRUD
7
REQL*DVL]SUGNRFL
I C
ZVNXWHNF]HJRQDVWSXMHMHJRRGHWNDQLH
Z FKZLOL RVLJQLFLD SR]LRPX
u
U
U
U
C
BEP
CC
BEP
1
1
2
3
−
≈
−
2GHWNDQLH
WUDQ]\VWRUD 7
Z\ZRáXMH UHJHQHUDF\MQ\ SU]HU]XW Z F]DVLH NWyUHJR
WUDQ]\VWRU 7
XOHJD ]DWNDQLX D VXP SUGyZ
2I
SU]HZRG]L WUDQ]\VWRU
7
6NRNRZ\ ]DQLN SUGX NROHNWRUD 7
Z\ZRáXMH GRGDWQL VNRN
QDSLFLDRZDUWRü
U
U
F
BEP
≈
QDNROHNWRU]HNWyU\SU]HQRVLVLSU]H]
ZWyUQLN 7
L SRZRGXMH VNRNRZ\ SU]\URVW QDSLFLD HPLWHUD WUDQ]\VWRUD
7
D SU]H] NRQGHQVDWRU & UyZQLH* HPLWHUD WUDQ]\VWRUD 7
6NRNRZD
]PLDQD SRWHQFMDáX HPLWHUD 7
GR ZDUWRFL
U
U
CC
BEP
1
2
−
MHVW
XWU]\P\ZDQDDZVNXWHNSU]HáDGRZ\ZDQLDNRQGHQVDWRUD&]DF]\QDVL
REQL*DüSRWHQFMDáHPLWHUDWUDQ]\VWRUD7
0LG]\V]F]\WRZDZDUWRüQDSLFLDWUyMNWQHJRQDNRQGHQVDWRU]H
Z\QRVL
2 U
BEP
: FLJX SRáRZ\ RNUHVX GUJD PXOWLZLEUDWRUD
NRQGHQVDWRUáDGXMHVL]SUGNRFL
I C
DQDSLFLHQDQLP]PLHQLDVL
R ZDUWRü PLG]\V]F]\WRZ
2 U
BEP
6WG F]VWRWOLZRü L RNUHV GUJD
Z\QRV]
f
T
I
U
C
BEP
= =
1
4
2SLVDQ\ XNáDG XPR*OLZLD JHQHUDFM SU]HELHJX SURVWRNWQHJR R
F]VWRWOLZRFL GR 0+] G]LNL SUDF\ WUDQ]\VWRUyZ Z REV]DU]H
DNW\ZQ\PEH]ZFKRG]HQLDZVWDQQDV\FHQLD1DSLFLHZ\MFLRZHMHVW
SU]HELHJLHP SURVWRNWQ\P R DPSOLWXG]LH
U
BE
SU]\OHJDMF\P GR
QDSLFLD
U
CC1
.
&]VWRWOLZRü GUJD JHQHUDWRUD MHVW ]DOH*QD RG WHPSHUDWXU\
SRSU]H]WHUPLF]Q]DOH*QRüQDSLFLD
(
)
8
G8
G7
%(
%(
α
≈ −
P9 &
R
1DSRGVWDZLH]DOH*QRFLRWU]\PXMHP\
ω
ω
α
α
G
G7
8
G8
G7
%(3
%(3
= −
=
=
=
=
P9 &
P9
&
SSP &
R
R
R
:XNáDG]LHPR*QDX]\VNDüFDáNRZLWNRPSHQVDFMWHUPLF]Q\FK]PLDQ
SXOVDFML URGNRZHM SRSU]H] X]DOH*QLHQLH SUGX (UyGHá 7
7
RG
WHPSHUDWXU\&KDUDNWHU\VW\NDSU]HVWUDMDQLDPR*HE\üOLQLRZDZ]DNUHVLH
GHNDG
1D LGHQW\F]QHM ]DVDG]LH V EXGRZDQH XNáDG\ 9&2 ] WUDQ]\VWRUDPL
026]NDQDáHPZ]ERJDFDQ\P
3U]\NáDGUHDOL]DFMLXNáDGXVFDORQHJR3//
1D U\V SU]HGVWDZLRQR VFKHPDW EORNRZ\ L VFKHPDW LGHRZ\
XNáDGX3//W\SX1(ILUP\6LJQHWLFVZ\NRQDQHJRZPRQROLW\F]QHM
WHFKQRORJLL ELSRODUQHM >@ 6FKHPDW EORNRZ\ SU]HGVWDZLRQ\ QD
U\VD Uy*QL VL RG UR]ZD*DQHJR ZF]HQLHM QD U\V W\P *H SWOD
]DZLHUD GRGDWNRZ\ Z]PDFQLDF] R Z]PRFQLHQLX $ G]LNL F]HPX
FDáNRZLWHZ]PRFQLHQLHSWOLZ\QRVL
K
k k A
D
G
=
.
T
1
T
2
T
3
:\MFLH
9&2
4
3
T
4
T
11
T
14
T
13
T
24
T
23
T
12
3RMHPQRü
JHQ 9&2
5
6
&
0
T
20
T
21
T
2 2 B
T
2 2 A
T
29
%LDV
5()
1
1
N
1
N
16
8
&&
7
9
2 5
N
N
N
7
9
8
N
8
N
T
26
T
27
T
5
D
8
D
9
D
10
D
11
D
3
D
2
D
1
D
4
D
12
D
13
D
6
D
7
7 4
N
T
6
T
9
T
8
T
7
2
N
2
N
4
9
5 3
N
14
9
14
9
:H
HNW
ID]\
GHW
2
15
1
N
500
Ω
8 2
N
8 2
N
T
1 0
T
19
T
25
T
17
T
18
D
5
14
13
9
12
11
10
'HHPID]D
)LOWU
9&2
'HWHNWRU ID]\
7
=DNUHV
W M L
12
N
0 75
P$
2 0
P$
:\
:HMFLH
HNWRUD
ID]\
GHW
9&2
2JUDQLF]QLN
$
'HWHNWRU
ID]\
8NáDG\
SRODU\]DFML
:]PDFQLDF]
)LOWU
)'3
( )
:HMFLH
V\JQDáX X W
L
:HMFLH
9&2
:\MFLH
9&2
'HHPID]D
:\MFLH
9
+
&
0
6
5
4
3
1
2
15
11
12 13
14
10
16
9
8
7
=DNUHV
SU]HVWUDMDQLD
a)
b)
N
5\V3WODID]RZDW\SX1(ILUP\6LJQHWLFVDVFKHPDWEORNRZ\
EVFKHPDWLGHRZ\
8NáDG VFDORQ\ VNáDGD VL ] GHWHNWRUD ID]\ Z SRVWDFL PRGXODWRUD
]UyZQRZD*RQHJR VNRPSHQVRZDQHJR WHUPLF]QLH JHQHUDWRUD 9&2 W\SX
PXOWLZLEUDWRU ] SRMHPQRFLRZ\P VSU]*HQLHP HPLWHURZ\P XNáDG
%RZHVD*UHEHQH¶DZ]PDFQLDF]DLGRáF]RQHJR]HZQWU]QLHILOWUX
8NáDG ]DVLODQ\ MHVW SRMHG\QF]\P QDSLFLHP
U
CC
SU]\ F]\P
RGG]LHOQH QL*V]H QDSLFLD ]DVLODMFH JHQHUDWRU 9&2 L GHWHNWRU ID]\
Z\WZDU]DQH V ZHZQWU]QLH SU]\ SRPRF\ WUDQ]\VWRUyZ 7
7
L
WHUPLF]QLH VNRPSHQVRZDQ\FK QDSLü RGQLHVLHQLD ]UHDOL]RZDQ\FK QD
GLRGDFK=HQHUDLWUDQ]\VWRUDFKZSRáF]HQLXGLRGRZ\P
%D]\ WUDQ]\VWRUyZ 7
7
GHWHNWRUD ID]\ V VSRODU\]RZDQH
ZHZQWU]QLH QDSLFLHP VWDá\P 9 GODWHJR V\JQDá ZHMFLRZ\
( )
u t
i
QDOH*\ GRáF]\ü SRSU]H] ]HZQWU]QH NRQGHQVDWRU\ VSU]JDMFH :
XNáDG]LHQLHPDVWDáHJRSRáF]HQLDJHQHUDWRUD9&2]GHWHNWRUHPID]\
3RáF]HQLH WR PR*H E\ü ]UHDOL]RZDQH ]HZQWU]QLH DOER SRSU]H]
EH]SRUHGQLHSRáF]HQLHZ\MüZWyUQLNRZ\FKJHQHUDWRUD9&2Z\MFLD
]ZHMFLDPLGHWHNWRUDID]\ZHMFLHDOER]DSRUHGQLFWZHP
GRGDWNRZHJR]HZQWU]QHJRG]LHOQLNDF]VWRWOLZRFLZFHOXSRV]HU]HQLD
]DNUHVX F]VWRWOLZRFLRZHJR JHQHUDWRUD 9&2 7UDQ]\VWRU\ 7
7
]DSHZQLDM QLVNRLPSHGDQF\MQH Z\MFLH Uy*QLFRZH JHQHUDWRUD 9&2
*HQHUDWRU9&2]UHDOL]RZDQ\QDWUDQ]\VWRUDFK7
7
VWHURZDQ\MHVW
] Z\MFLD Uy*QLFRZHJR GHWHNWRUD ID]\ SRSU]H] ZWyUQLNL HPLWHURZH ]
WUDQ]\VWRUDPL7
7
LZ]PDFQLDF]Uy*QLFRZ\]WUDQ]\VWRUDPL7
7
:]PDFQLDF]Uy*QLFRZ\7
7
SHáQLUROSU]HWZRUQLNDQDSLFLHSUG
ERZLHP SRáRZD SUGX Z\MFLRZHJR WUDQ]\VWRUD 7
R SRGZyMQ\P
NROHNWRU]HMHVW]DZV]HF]FLSUGXáDGRZDQLDSRMHPQRFLHPLWHURZHM
C
0
JHQHUDWRUD 9&2 : F]DVLH JG\ SU]HZRG]L WUDQ]\VWRU 7
NRQGHQVDWRU
C
0
MHVW áDGRZDQ\ SUGHP (UyGáD VWDáRSUGRZHJR ]
WUDQ]\VWRUHP7
LSUGHPNROHNWRUDWUDQ]\VWRUD7
%
QDWRPLDVWZF]DVLH
SU]HZRG]HQLD WUDQ]\VWRUD 7
SUG áDGRZDQLD MHVW VXP SUGX (UyGáD
VWDáRSUGRZHJR ] WUDQ]\VWRUHP 7
L SUGX Z\MFLRZHJR WUDQ]\VWRUD
7
$
&]VWRWOLZRüZáDVQDJHQHUDWRUD9&2MHVW]PLHQLDQD]DSRPRF
SRMHPQRFL
C
0
ZJUDQLFDFKRGNLONX+]GR0+]:FHOXSRND]DQLD
SRáF]H DSOLNDF\MQ\FK QD U\V SU]HGVWDZLRQR VFKHPDW
GHPRGXODWRUD)0]XNáDGHP1(
1DZ\MFLXGHPRGXODWRUD]DVWRVRZDQRUyZQLH*ILOWUGHHPID]\
&
0
1 2
9&2
')
+
−
1 3
1 5
1 6
8
2
4
3
+
8
9
&&
25
S)
1
Q)
1
Q)
15
N
Ω
)LOWU
GHHPID]\
:<2
:<1
5
6
9
1 5
1 4
10
Q)
S)
N E 5 6 2
I
L
5\V6FKHPDWGHPRGXODWRUD)0]XNáDGHP1(ILUP\6LJQHWLFV